{"title":"宽法兰同心钢支撑框架的循环性能与断裂","authors":"M. Haddad, N. Shrive","doi":"10.1080/13287982.2020.1786988","DOIUrl":null,"url":null,"abstract":"ABSTRACT Concentrically braced steel frames (CBFs) are often used in buildings to resist lateral loads induced by wind and seismic excitations. Large-size wide-flange (WF) steel brace members could be selected and used in these frames. In the current study, a finite element model (FEM) with a strain-based fracture rule is presented to investigate the performance of a large-size WF brace member in single-storey CBF with different sizes of beams and columns when subjected to reversed axial displacements. The effects of restraining the far ends of the beam bottom-flange, increasing the thickness of tab-plates, increasing the number of bolts used to connect the tab-plates to the web of the beam, and the location of the work-point along the brace with respect the beam-column assembly, on the hysteresis response of the frame are investigated. Results suggest that it may be advantageous to reduce the number of bolts and to increase the bolt size to allow for an increase in the thickness of the tab-plates to resist the extreme rotational demand in high seismic regions, thereby preventing fracture of the weld between the tab-plates and the column flange.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":"59 1","pages":"263 - 278"},"PeriodicalIF":0.9000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyclic performance and fracture of wide flanged concentrically steel braced frames\",\"authors\":\"M. Haddad, N. Shrive\",\"doi\":\"10.1080/13287982.2020.1786988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Concentrically braced steel frames (CBFs) are often used in buildings to resist lateral loads induced by wind and seismic excitations. Large-size wide-flange (WF) steel brace members could be selected and used in these frames. In the current study, a finite element model (FEM) with a strain-based fracture rule is presented to investigate the performance of a large-size WF brace member in single-storey CBF with different sizes of beams and columns when subjected to reversed axial displacements. The effects of restraining the far ends of the beam bottom-flange, increasing the thickness of tab-plates, increasing the number of bolts used to connect the tab-plates to the web of the beam, and the location of the work-point along the brace with respect the beam-column assembly, on the hysteresis response of the frame are investigated. Results suggest that it may be advantageous to reduce the number of bolts and to increase the bolt size to allow for an increase in the thickness of the tab-plates to resist the extreme rotational demand in high seismic regions, thereby preventing fracture of the weld between the tab-plates and the column flange.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":\"59 1\",\"pages\":\"263 - 278\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2020.1786988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2020.1786988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Cyclic performance and fracture of wide flanged concentrically steel braced frames
ABSTRACT Concentrically braced steel frames (CBFs) are often used in buildings to resist lateral loads induced by wind and seismic excitations. Large-size wide-flange (WF) steel brace members could be selected and used in these frames. In the current study, a finite element model (FEM) with a strain-based fracture rule is presented to investigate the performance of a large-size WF brace member in single-storey CBF with different sizes of beams and columns when subjected to reversed axial displacements. The effects of restraining the far ends of the beam bottom-flange, increasing the thickness of tab-plates, increasing the number of bolts used to connect the tab-plates to the web of the beam, and the location of the work-point along the brace with respect the beam-column assembly, on the hysteresis response of the frame are investigated. Results suggest that it may be advantageous to reduce the number of bolts and to increase the bolt size to allow for an increase in the thickness of the tab-plates to resist the extreme rotational demand in high seismic regions, thereby preventing fracture of the weld between the tab-plates and the column flange.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.