{"title":"阻塞性睡眠呼吸暂停的门控复发单位","authors":"Jasman Pardede, Muhammad Fauzan Raspati","doi":"10.26760/mindjournal.v6i2.221-235","DOIUrl":null,"url":null,"abstract":"AbstrakDalam melakukan penelitian obstructive sleep apnea (OSA), polysomnography (PSG) digunakan untuk diagnosis. Namun subjek diharuskan menginap dilaboratorium selama beberapa malam untuk melakukan tes dengan PSG dan karena banyaknya alat yang harus dikenakan pada tubuh dapat membuat tidak nyaman saat pengambilan data. Belakangan ini, beberapa peneliti mengunakan single-lead ECG untuk melakukan deteksi OSA. Untuk menghasilkan model terbaik, akan dilakukan eksperimen training, dengan batch normalization dan dropout yang berbeda. Pada penelitian ini apnea-ecg dataset digunakan, RR-Interval dan amplitudo QRS complex dari released set berjumlah 35 data akan disegmentasi permenit untuk digunakan sebagai input dari arsitektur yang diajukan adalah gated recurrent unit (GRU). Lalu withheld set berjumlah 35 data akan digunakan untuk pengujian per-segment dan per-recording. Kinerja sistem diukur berdasarkan accuracy, sensitifity, dan specificity dengan pengujian per-segment mendapat hasil accuracy 83.92%, sensitifity 81.28%, dan specificity 85.55%, dan pengujian per-recording mendapat hasil accuracy 97.14%, sensitifity 95.65% dan specificity 100%.Kata kunci: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.AbstractIn conducting obstructive sleep apnea (OSA) studies, polysomnography (PSG) was used for the diagnosis. However, the subject was required to stay in the laboratory for several nights to carry out tests with the PSG and because of the many devices that had to be worn on the body, it could be uncomfortable to collect data. Recently, several researchers have used single-lead ECG to detect OSA. To produce the best model, training experiments will be conducted, with different batch normalization and dropout. In this study, the apnea-ecg dataset is used, the RR-Interval and the QRS complex amplitude from the released set totaling 35 data will be segmented per minute to be used as input for the proposed architecture is the gated recurrent unit (GRU). Then the withheld set of 35 data will be used for per-segment and per-recording testing. System performance was measured based on accuracy, sensitivity, and specificity with per-segment testing getting 83.92% accuracy, 81.28% sensitivity, and 85.55% specificity, and per-recording testing got 97.14% accuracy, 95.65% sensitivity and 100% specificity.Keywords: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gated Recurrent Units dalam Mendeteksi Obstructive Sleep Apnea\",\"authors\":\"Jasman Pardede, Muhammad Fauzan Raspati\",\"doi\":\"10.26760/mindjournal.v6i2.221-235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstrakDalam melakukan penelitian obstructive sleep apnea (OSA), polysomnography (PSG) digunakan untuk diagnosis. Namun subjek diharuskan menginap dilaboratorium selama beberapa malam untuk melakukan tes dengan PSG dan karena banyaknya alat yang harus dikenakan pada tubuh dapat membuat tidak nyaman saat pengambilan data. Belakangan ini, beberapa peneliti mengunakan single-lead ECG untuk melakukan deteksi OSA. Untuk menghasilkan model terbaik, akan dilakukan eksperimen training, dengan batch normalization dan dropout yang berbeda. Pada penelitian ini apnea-ecg dataset digunakan, RR-Interval dan amplitudo QRS complex dari released set berjumlah 35 data akan disegmentasi permenit untuk digunakan sebagai input dari arsitektur yang diajukan adalah gated recurrent unit (GRU). Lalu withheld set berjumlah 35 data akan digunakan untuk pengujian per-segment dan per-recording. Kinerja sistem diukur berdasarkan accuracy, sensitifity, dan specificity dengan pengujian per-segment mendapat hasil accuracy 83.92%, sensitifity 81.28%, dan specificity 85.55%, dan pengujian per-recording mendapat hasil accuracy 97.14%, sensitifity 95.65% dan specificity 100%.Kata kunci: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.AbstractIn conducting obstructive sleep apnea (OSA) studies, polysomnography (PSG) was used for the diagnosis. However, the subject was required to stay in the laboratory for several nights to carry out tests with the PSG and because of the many devices that had to be worn on the body, it could be uncomfortable to collect data. Recently, several researchers have used single-lead ECG to detect OSA. To produce the best model, training experiments will be conducted, with different batch normalization and dropout. In this study, the apnea-ecg dataset is used, the RR-Interval and the QRS complex amplitude from the released set totaling 35 data will be segmented per minute to be used as input for the proposed architecture is the gated recurrent unit (GRU). Then the withheld set of 35 data will be used for per-segment and per-recording testing. System performance was measured based on accuracy, sensitivity, and specificity with per-segment testing getting 83.92% accuracy, 81.28% sensitivity, and 85.55% specificity, and per-recording testing got 97.14% accuracy, 95.65% sensitivity and 100% specificity.Keywords: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.\",\"PeriodicalId\":43900,\"journal\":{\"name\":\"Time & Mind-The Journal of Archaeology Consciousness and Culture\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time & Mind-The Journal of Archaeology Consciousness and Culture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26760/mindjournal.v6i2.221-235\",\"RegionNum\":4,\"RegionCategory\":\"历史学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v6i2.221-235","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
分离性睡眠呼吸暂停(OSA)和多导志(PSG)用于诊断。但是受试者需要在实验室里呆上几个晚上,在PSG上做测试,因为大量的设备会让数据检索变得不舒服。最近,一些研究人员使用单导心电图来检测OSA。为了生产最好的模型,将进行训练实验,使用不同的正规性和滴水剂。在本研究中使用的apne- ecg数据集,rr区间和振幅计算的35个数据将以分钟为单位,用于构建相关的架构输入。然后限制组将使用35个数据进行评级和记录测试。系统性能是根据准确、敏感和具体测试达到83.92%、81.28%敏感性和突出程度85.5%,按记录器测试准确达到97% .14%、95.65%敏感和100%。关键词:阻塞性睡眠呼吸暂停、格鲁、心电图、r间隔、QRS复合体。阻塞性睡眠呼吸暂停(OSA)和多导志(PSG)被用于诊断。悬浮,受试者被要求留在实验室几个晚上,带着PSG进行测试,因为必须在身体上使用的许多错误,在收集数据时可能会让人感到不舒服。最近,几个研究人员使用了欧洲线索检测OSA。为了生产最好的模型,培训实验将受到影响,使用不同的常规批次和下降。在这项研究中,应用ext -ecg数据已被使用,rrs参数和QRS参数的振幅每分钟将被缩短35数据将被用于提议架构是一个潜在的回路单位。然后保留的35个数据集将用于片段和录音测试。确定的系统性能是基于83.92%的准确,88.28%的敏感性,85.5%的鉴别,记录测试结果为97%。14%的准确,95%Keywords:阻塞性睡眠呼吸暂停,GRU, ECG, r - range, QRS complex。
Gated Recurrent Units dalam Mendeteksi Obstructive Sleep Apnea
AbstrakDalam melakukan penelitian obstructive sleep apnea (OSA), polysomnography (PSG) digunakan untuk diagnosis. Namun subjek diharuskan menginap dilaboratorium selama beberapa malam untuk melakukan tes dengan PSG dan karena banyaknya alat yang harus dikenakan pada tubuh dapat membuat tidak nyaman saat pengambilan data. Belakangan ini, beberapa peneliti mengunakan single-lead ECG untuk melakukan deteksi OSA. Untuk menghasilkan model terbaik, akan dilakukan eksperimen training, dengan batch normalization dan dropout yang berbeda. Pada penelitian ini apnea-ecg dataset digunakan, RR-Interval dan amplitudo QRS complex dari released set berjumlah 35 data akan disegmentasi permenit untuk digunakan sebagai input dari arsitektur yang diajukan adalah gated recurrent unit (GRU). Lalu withheld set berjumlah 35 data akan digunakan untuk pengujian per-segment dan per-recording. Kinerja sistem diukur berdasarkan accuracy, sensitifity, dan specificity dengan pengujian per-segment mendapat hasil accuracy 83.92%, sensitifity 81.28%, dan specificity 85.55%, dan pengujian per-recording mendapat hasil accuracy 97.14%, sensitifity 95.65% dan specificity 100%.Kata kunci: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.AbstractIn conducting obstructive sleep apnea (OSA) studies, polysomnography (PSG) was used for the diagnosis. However, the subject was required to stay in the laboratory for several nights to carry out tests with the PSG and because of the many devices that had to be worn on the body, it could be uncomfortable to collect data. Recently, several researchers have used single-lead ECG to detect OSA. To produce the best model, training experiments will be conducted, with different batch normalization and dropout. In this study, the apnea-ecg dataset is used, the RR-Interval and the QRS complex amplitude from the released set totaling 35 data will be segmented per minute to be used as input for the proposed architecture is the gated recurrent unit (GRU). Then the withheld set of 35 data will be used for per-segment and per-recording testing. System performance was measured based on accuracy, sensitivity, and specificity with per-segment testing getting 83.92% accuracy, 81.28% sensitivity, and 85.55% specificity, and per-recording testing got 97.14% accuracy, 95.65% sensitivity and 100% specificity.Keywords: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.