无先验知识的模糊c均值训练支持向量机用于高光谱图像内容分类

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY Pub Date : 2022-09-10 DOI:10.14500/aro.101025
A. Taher
{"title":"无先验知识的模糊c均值训练支持向量机用于高光谱图像内容分类","authors":"A. Taher","doi":"10.14500/aro.101025","DOIUrl":null,"url":null,"abstract":"In this paper, a new cooperative classification method called auto-train support vector machine (SVM) is proposed. This new method converts indirectly SVM to an unsupervised classification method. The main disadvantage of conventional SVM is that it needs a priori knowledge about the data to train it. To avoid using this knowledge that is strictly required to train SVM, in this cooperative method, the data, that is, hyperspectral images (HSIs), are first clustered using Fuzzy C-means (FCM); then, the created labels are used to train SVM. At this stage, the image content is classified using the auto-trained SVM. Using FCM, clustering reveals how strongly a pixel is assigned to a class thanks to the fuzzification process. This information leads to gaining two advantages, the first one is that no prior knowledge about the data (known labels) is needed and the second one is that the training data selection is not done randomly (the training data are selected according to their degree of membership to a class). The proposed method gives very promising results. The method is tested on two HSIs, which are Indian Pines and Pavia University. The results obtained have a very high accuracy of the classification and exceed the existing manually trained methods in the literature.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Train Support Vector Machine Using Fuzzy C-means Without a Prior Knowledge for Hyperspectral Image Content Classification\",\"authors\":\"A. Taher\",\"doi\":\"10.14500/aro.101025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new cooperative classification method called auto-train support vector machine (SVM) is proposed. This new method converts indirectly SVM to an unsupervised classification method. The main disadvantage of conventional SVM is that it needs a priori knowledge about the data to train it. To avoid using this knowledge that is strictly required to train SVM, in this cooperative method, the data, that is, hyperspectral images (HSIs), are first clustered using Fuzzy C-means (FCM); then, the created labels are used to train SVM. At this stage, the image content is classified using the auto-trained SVM. Using FCM, clustering reveals how strongly a pixel is assigned to a class thanks to the fuzzification process. This information leads to gaining two advantages, the first one is that no prior knowledge about the data (known labels) is needed and the second one is that the training data selection is not done randomly (the training data are selected according to their degree of membership to a class). The proposed method gives very promising results. The method is tested on two HSIs, which are Indian Pines and Pavia University. The results obtained have a very high accuracy of the classification and exceed the existing manually trained methods in the literature.\",\"PeriodicalId\":8398,\"journal\":{\"name\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14500/aro.101025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.101025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的协同分类方法——自动训练支持向量机(SVM)。该方法将支持向量机间接转化为一种无监督分类方法。传统支持向量机的主要缺点是需要对数据的先验知识进行训练。为了避免使用这些严格要求的知识来训练支持向量机,在这种合作方法中,首先使用模糊c均值(FCM)对数据即高光谱图像(hsi)进行聚类;然后,将生成的标签用于训练SVM。在此阶段,使用自动训练的支持向量机对图像内容进行分类。使用FCM,聚类揭示了由于模糊化过程,像素被分配到一个类的强度。这个信息带来了两个好处,一是不需要关于数据的先验知识(已知标签),二是训练数据的选择不是随机的(根据训练数据与类的隶属度来选择)。该方法得到了很好的结果。该方法在Indian Pines和Pavia University两所hsi进行了测试。所得结果具有很高的分类精度,超过了文献中现有的人工训练方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Train Support Vector Machine Using Fuzzy C-means Without a Prior Knowledge for Hyperspectral Image Content Classification
In this paper, a new cooperative classification method called auto-train support vector machine (SVM) is proposed. This new method converts indirectly SVM to an unsupervised classification method. The main disadvantage of conventional SVM is that it needs a priori knowledge about the data to train it. To avoid using this knowledge that is strictly required to train SVM, in this cooperative method, the data, that is, hyperspectral images (HSIs), are first clustered using Fuzzy C-means (FCM); then, the created labels are used to train SVM. At this stage, the image content is classified using the auto-trained SVM. Using FCM, clustering reveals how strongly a pixel is assigned to a class thanks to the fuzzification process. This information leads to gaining two advantages, the first one is that no prior knowledge about the data (known labels) is needed and the second one is that the training data selection is not done randomly (the training data are selected according to their degree of membership to a class). The proposed method gives very promising results. The method is tested on two HSIs, which are Indian Pines and Pavia University. The results obtained have a very high accuracy of the classification and exceed the existing manually trained methods in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
期刊最新文献
Encryption of Color Images with a New Framework Microstrip Passive Components for Energy Harvesting and 5G Applications Optimizing Emotional Insight through Unimodal and Multimodal Long Short-term Memory Models A Review on Adverse Drug Reaction Detection Techniques Deep Learning-Based Optical Music Recognition for Semantic Representation of Non-overlap and Overlap Music Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1