旋转球壳中热成分对流和相关发电机的状态

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Geophysical and Astrophysical Fluid Dynamics Pub Date : 2020-04-25 DOI:10.1080/03091929.2020.1762875
J. Mather, Radostin D Simitev
{"title":"旋转球壳中热成分对流和相关发电机的状态","authors":"J. Mather, Radostin D Simitev","doi":"10.1080/03091929.2020.1762875","DOIUrl":null,"url":null,"abstract":"Convection and magnetic field generation in the Earth and planetary interiors are driven by both thermal and compositional gradients. In this work numerical simulations of finite-amplitude double-diffusive convection and dynamo action in rapidly rotating spherical shells full of incompressible two-component electrically-conducting fluid are reported. Four distinct regimes of rotating double-diffusive convection identified in a recent linear analysis (Silva, Mather and Simitev, Geophys. Astrophys. Fluid Dyn. 2019, 113, 377) are found to persist significantly beyond the onset of instability while their regime transitions remain abrupt. In the semi-convecting and the fingering regimes characteristic flow velocities are small compared to those in the thermally- and compositionally-dominated overturning regimes, while zonal flows remain weak in all regimes apart from the thermally-dominated one. Compositionally-dominated overturning convection exhibits significantly narrower azimuthal structures compared to all other regimes while differential rotation becomes the dominant flow component in the thermally-dominated case as driving is increased. Dynamo action occurs in all regimes apart from the regime of fingering convection. While dynamos persist in the semi-convective regime they are very much impaired by small flow intensities and very weak differential rotation in this regime which makes poloidal to toroidal field conversion problematic. The dynamos in the thermally-dominated regime include oscillating dipolar, quadrupolar and multipolar cases similar to the ones known from earlier parameter studies. Dynamos in the compositionally-dominated regime exhibit subdued temporal variation and remain predominantly dipolar due to weak zonal flow in this regime. These results significantly enhance our understanding of the primary drivers of planetary core flows and magnetic fields.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"1 1","pages":"61 - 84"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Regimes of thermo-compositional convection and related dynamos in rotating spherical shells\",\"authors\":\"J. Mather, Radostin D Simitev\",\"doi\":\"10.1080/03091929.2020.1762875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convection and magnetic field generation in the Earth and planetary interiors are driven by both thermal and compositional gradients. In this work numerical simulations of finite-amplitude double-diffusive convection and dynamo action in rapidly rotating spherical shells full of incompressible two-component electrically-conducting fluid are reported. Four distinct regimes of rotating double-diffusive convection identified in a recent linear analysis (Silva, Mather and Simitev, Geophys. Astrophys. Fluid Dyn. 2019, 113, 377) are found to persist significantly beyond the onset of instability while their regime transitions remain abrupt. In the semi-convecting and the fingering regimes characteristic flow velocities are small compared to those in the thermally- and compositionally-dominated overturning regimes, while zonal flows remain weak in all regimes apart from the thermally-dominated one. Compositionally-dominated overturning convection exhibits significantly narrower azimuthal structures compared to all other regimes while differential rotation becomes the dominant flow component in the thermally-dominated case as driving is increased. Dynamo action occurs in all regimes apart from the regime of fingering convection. While dynamos persist in the semi-convective regime they are very much impaired by small flow intensities and very weak differential rotation in this regime which makes poloidal to toroidal field conversion problematic. The dynamos in the thermally-dominated regime include oscillating dipolar, quadrupolar and multipolar cases similar to the ones known from earlier parameter studies. Dynamos in the compositionally-dominated regime exhibit subdued temporal variation and remain predominantly dipolar due to weak zonal flow in this regime. These results significantly enhance our understanding of the primary drivers of planetary core flows and magnetic fields.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"61 - 84\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1762875\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1762875","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 6

摘要

地球和行星内部的对流和磁场产生是由热梯度和成分梯度共同驱动的。本文报道了在充满不可压缩双组分导电流体的快速旋转球壳中有限振幅双扩散对流和发电机作用的数值模拟。在最近的线性分析中发现了四种不同的旋转双扩散对流(Silva, Mather和Simitev,《地球物理》)。12,54。流体动力学,2019,113,377)被发现在不稳定开始后持续存在,而它们的政权转变仍然是突然的。在半对流型和指理型气流中,特征气流速度比热主导型和成分主导型的小,而在除热主导型外的所有气流中,纬向气流都很弱。成分主导的翻转对流的方位角结构明显比其他类型的对流窄,而在热主导的情况下,随着驱动的增加,差速旋转成为主要的流动成分。发电机作用发生在除指指对流以外的所有状态。当发电机保持在半对流状态时,它们受到小的流动强度和非常弱的微分旋转的严重损害,这使得极向环向场转换成为问题。热主导状态下的发电机包括振荡的偶极、四极和多极情况,类似于早期参数研究中已知的情况。在成分占主导地位的状态下,发电机表现出较弱的时间变化,由于该状态下的弱纬向流动,发电机主要保持偶极态。这些结果大大提高了我们对行星核心流和磁场的主要驱动因素的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regimes of thermo-compositional convection and related dynamos in rotating spherical shells
Convection and magnetic field generation in the Earth and planetary interiors are driven by both thermal and compositional gradients. In this work numerical simulations of finite-amplitude double-diffusive convection and dynamo action in rapidly rotating spherical shells full of incompressible two-component electrically-conducting fluid are reported. Four distinct regimes of rotating double-diffusive convection identified in a recent linear analysis (Silva, Mather and Simitev, Geophys. Astrophys. Fluid Dyn. 2019, 113, 377) are found to persist significantly beyond the onset of instability while their regime transitions remain abrupt. In the semi-convecting and the fingering regimes characteristic flow velocities are small compared to those in the thermally- and compositionally-dominated overturning regimes, while zonal flows remain weak in all regimes apart from the thermally-dominated one. Compositionally-dominated overturning convection exhibits significantly narrower azimuthal structures compared to all other regimes while differential rotation becomes the dominant flow component in the thermally-dominated case as driving is increased. Dynamo action occurs in all regimes apart from the regime of fingering convection. While dynamos persist in the semi-convective regime they are very much impaired by small flow intensities and very weak differential rotation in this regime which makes poloidal to toroidal field conversion problematic. The dynamos in the thermally-dominated regime include oscillating dipolar, quadrupolar and multipolar cases similar to the ones known from earlier parameter studies. Dynamos in the compositionally-dominated regime exhibit subdued temporal variation and remain predominantly dipolar due to weak zonal flow in this regime. These results significantly enhance our understanding of the primary drivers of planetary core flows and magnetic fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
期刊最新文献
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows Can the observable solar activity spectrum be reproduced by a simple dynamo model? Solitary wave scattering by segmented arc-shaped breakwater Self-adjointness of sound-proof models for magnetic buoyancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1