利用管道中参考液体评估沉积物体积的技术

I. Z. Denislamov, P. N. Shadrina, D. F. Sitdikova
{"title":"利用管道中参考液体评估沉积物体积的技术","authors":"I. Z. Denislamov, P. N. Shadrina, D. F. Sitdikova","doi":"10.17122/ntj-oil-2023-2-31-39","DOIUrl":null,"url":null,"abstract":"The gas-liquid mixture flow along an oil and gas field pipeline is a complex process, the parameters of which, as a rule, are not determined along its length. Pressure and temperature of water-oil emulsion decrease along the pipeline length, pressure and temperature conditions of separation from oil both light components in the form of associated petroleum gas and heavy components – in the form of asphaltenes, resins, paraffins and mechanical impurities – change. Two techniques for deposit quantitative diagnostics  in the pipeline are discussed in the article. Viscosity and velocity of injected reference fluid in the pipeline section  complicated by deposits are considered as informative parameters when using pressure sensors and ultrasonic flowmeter. \nTechnologies for the quantitative assessment of deposits in oilfield pipelines based on the control of the movement of a fluid with a reference property different from the property of the pipeline fluid are proposed. According to the first technology, the viscosity of the liquid is changed and the pressure difference at the beginning and at the end of the pipeline with deposits is fixed in time. According to the second technology, the value of the increased velocity of fluid movement in places where the pipeline is narrowed due to the presence of deposits is measured. The theoretical basis of the processes occurring with liquids in pipeline transport is substantiated. With an increase in the viscosity of the reference liquid, the degree of compression of the liquid increases and, as a result, the frequency of vibrations of the liquid molecules increases. With a decrease in the viscosity of the reference liquid, the reverse picture is observed.","PeriodicalId":42555,"journal":{"name":"Nauka i Tehnologii Truboprovodnogo Transporta Nefti i Nefteproduktov-Science & Technologies-Oil and Oil Products Pipeline Transportation","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TECHNOLOGIES FOR THE DEPOSITS VOLUME ASSESSING USING REFERENCE LIQUIDS IN PIPELINES\",\"authors\":\"I. Z. Denislamov, P. N. Shadrina, D. F. Sitdikova\",\"doi\":\"10.17122/ntj-oil-2023-2-31-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas-liquid mixture flow along an oil and gas field pipeline is a complex process, the parameters of which, as a rule, are not determined along its length. Pressure and temperature of water-oil emulsion decrease along the pipeline length, pressure and temperature conditions of separation from oil both light components in the form of associated petroleum gas and heavy components – in the form of asphaltenes, resins, paraffins and mechanical impurities – change. Two techniques for deposit quantitative diagnostics  in the pipeline are discussed in the article. Viscosity and velocity of injected reference fluid in the pipeline section  complicated by deposits are considered as informative parameters when using pressure sensors and ultrasonic flowmeter. \\nTechnologies for the quantitative assessment of deposits in oilfield pipelines based on the control of the movement of a fluid with a reference property different from the property of the pipeline fluid are proposed. According to the first technology, the viscosity of the liquid is changed and the pressure difference at the beginning and at the end of the pipeline with deposits is fixed in time. According to the second technology, the value of the increased velocity of fluid movement in places where the pipeline is narrowed due to the presence of deposits is measured. The theoretical basis of the processes occurring with liquids in pipeline transport is substantiated. With an increase in the viscosity of the reference liquid, the degree of compression of the liquid increases and, as a result, the frequency of vibrations of the liquid molecules increases. With a decrease in the viscosity of the reference liquid, the reverse picture is observed.\",\"PeriodicalId\":42555,\"journal\":{\"name\":\"Nauka i Tehnologii Truboprovodnogo Transporta Nefti i Nefteproduktov-Science & Technologies-Oil and Oil Products Pipeline Transportation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nauka i Tehnologii Truboprovodnogo Transporta Nefti i Nefteproduktov-Science & Technologies-Oil and Oil Products Pipeline Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17122/ntj-oil-2023-2-31-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nauka i Tehnologii Truboprovodnogo Transporta Nefti i Nefteproduktov-Science & Technologies-Oil and Oil Products Pipeline Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17122/ntj-oil-2023-2-31-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

油气田管道的气液混合流动是一个复杂的过程,其参数一般不沿管道长度方向确定。水-油乳化液的压力和温度随着管道长度的变化而降低,分离油的压力和温度条件发生变化,无论是伴生石油气体形式的轻组分,还是以沥青质、树脂、石蜡和机械杂质形式的重组分。本文讨论了管道中沉积物定量诊断的两种技术。在压力传感器和超声波流量计中,注入参考流体的粘度和速度是沉积复杂管道段的信息参数。提出了一种基于不同于管道流体性质的参考流体运动控制的油田管道沉积物定量评价技术。根据第一种技术,改变液体的粘度,及时固定有沉积物的管道起点和终点的压差。根据第二种技术,在由于沉积物的存在而使管道变窄的地方,测量流体运动速度增加的值。证实了液体在管道输送中发生的过程的理论基础。随着参考液体粘度的增加,液体的压缩程度增加,因此,液体分子的振动频率增加。随着参比液体粘度的降低,观察到相反的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TECHNOLOGIES FOR THE DEPOSITS VOLUME ASSESSING USING REFERENCE LIQUIDS IN PIPELINES
The gas-liquid mixture flow along an oil and gas field pipeline is a complex process, the parameters of which, as a rule, are not determined along its length. Pressure and temperature of water-oil emulsion decrease along the pipeline length, pressure and temperature conditions of separation from oil both light components in the form of associated petroleum gas and heavy components – in the form of asphaltenes, resins, paraffins and mechanical impurities – change. Two techniques for deposit quantitative diagnostics  in the pipeline are discussed in the article. Viscosity and velocity of injected reference fluid in the pipeline section  complicated by deposits are considered as informative parameters when using pressure sensors and ultrasonic flowmeter. Technologies for the quantitative assessment of deposits in oilfield pipelines based on the control of the movement of a fluid with a reference property different from the property of the pipeline fluid are proposed. According to the first technology, the viscosity of the liquid is changed and the pressure difference at the beginning and at the end of the pipeline with deposits is fixed in time. According to the second technology, the value of the increased velocity of fluid movement in places where the pipeline is narrowed due to the presence of deposits is measured. The theoretical basis of the processes occurring with liquids in pipeline transport is substantiated. With an increase in the viscosity of the reference liquid, the degree of compression of the liquid increases and, as a result, the frequency of vibrations of the liquid molecules increases. With a decrease in the viscosity of the reference liquid, the reverse picture is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
50.00%
发文量
41
期刊最新文献
INFLUENCE OF OPERATIONAL LOADS ON BALLASTING PARAMETERS OF UNDERWATER CROSSINGS OF TRUNK OIL AND GAS PIPELINES CARBON DIOXIDE UTILIZATION BY PRESSURIZED CONCRETE MIXER EFFICIENCY ANALYSIS OF POLYMERS IN THE COMPOSITION OF ENCAPSULATED MATERIAL FOR BIOREMEDIATION OF SOIL CONTAMINATED WITH FUEL OIL DETERMINATION OF PRODUCTIVITY COEFFICIENTS IN OBTAINING OIL-WATER INFLOWS FROM COMPLEX RESERVOIR ROCKS WITH TEXTURAL HETEROGENEITY PIPE PROTECTION FROM CORROSION UNDER THERMAL INSULATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1