自动导引车产品服务系统的弹性设计

R. Stetter
{"title":"自动导引车产品服务系统的弹性设计","authors":"R. Stetter","doi":"10.3390/vehicles5030043","DOIUrl":null,"url":null,"abstract":"Automated guided vehicles undertake complex transportation tasks, for instance, in production and storage systems. In recent years, an increased focus on sustainability has occurred as the effects of ongoing climate change have become more apparent. Engineers are searching intensively for ways to design technical systems that are not only environmentally sustainable, but are also resilient to the challenges of the changing climate and other environmental conditions. The production of automated guided vehicles requires considerable resources; therefore, a long operation time is desirable for overall sustainability. The performance of transportation tasks requires certain processes, such as control, path planning, coordination/synchronization, and maintenance and update processes—the latter are also very important for a long operation time. This article proposes understanding these processes as services and to explore product service systems with automated guided vehicles. Due to their complexity, the efficient and safe operation of such systems can be at risk because of several factors, such as component faults, external attacks and disturbances. For several years both resilient control and resilience engineering have been researched as possible remedies. An extension of these two concepts to the early stages of system development processes and including the system’s hardware is proposed in this article. This extension is referred to as resilient design. A primary purpose of resilient design is sustainability through extended usability and planned updates. The main intention of this article is to provide a comprehensive understanding of resilient design through application to product service systems with automated guided vehicles. The basis for this contribution is an extensive literature review and detailed system analyses on different levels. The main research results include novel application modes for product development methods. The explanation of the results is supported by means of an illustrative example based on a product service system with automated guided vehicles.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient Design of Product Service Systems with Automated Guided Vehicles\",\"authors\":\"R. Stetter\",\"doi\":\"10.3390/vehicles5030043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated guided vehicles undertake complex transportation tasks, for instance, in production and storage systems. In recent years, an increased focus on sustainability has occurred as the effects of ongoing climate change have become more apparent. Engineers are searching intensively for ways to design technical systems that are not only environmentally sustainable, but are also resilient to the challenges of the changing climate and other environmental conditions. The production of automated guided vehicles requires considerable resources; therefore, a long operation time is desirable for overall sustainability. The performance of transportation tasks requires certain processes, such as control, path planning, coordination/synchronization, and maintenance and update processes—the latter are also very important for a long operation time. This article proposes understanding these processes as services and to explore product service systems with automated guided vehicles. Due to their complexity, the efficient and safe operation of such systems can be at risk because of several factors, such as component faults, external attacks and disturbances. For several years both resilient control and resilience engineering have been researched as possible remedies. An extension of these two concepts to the early stages of system development processes and including the system’s hardware is proposed in this article. This extension is referred to as resilient design. A primary purpose of resilient design is sustainability through extended usability and planned updates. The main intention of this article is to provide a comprehensive understanding of resilient design through application to product service systems with automated guided vehicles. The basis for this contribution is an extensive literature review and detailed system analyses on different levels. The main research results include novel application modes for product development methods. The explanation of the results is supported by means of an illustrative example based on a product service system with automated guided vehicles.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5030043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5030043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动引导车辆承担复杂的运输任务,例如在生产和存储系统中。近年来,随着持续的气候变化的影响变得更加明显,人们越来越关注可持续性。工程师们正在密集地寻找设计技术系统的方法,这些技术系统不仅在环境上可持续发展,而且对不断变化的气候和其他环境条件的挑战也有弹性。自动导引车的生产需要相当大的资源;因此,为了整体的可持续性,需要较长的操作时间。运输任务的执行需要某些过程,例如控制、路径规划、协调/同步以及维护和更新过程,后者对于长时间的操作也非常重要。本文建议将这些过程理解为服务,并探索具有自动导引车的产品服务系统。由于其复杂性,此类系统的高效和安全运行可能受到多种因素的威胁,例如组件故障、外部攻击和干扰。多年来,人们一直在研究弹性控制和弹性工程作为可能的补救措施。本文建议将这两个概念扩展到系统开发过程的早期阶段,并包括系统的硬件。这种扩展被称为弹性设计。弹性设计的主要目的是通过扩展可用性和计划更新实现可持续性。本文的主要目的是通过将弹性设计应用于具有自动导引车的产品服务系统,提供对弹性设计的全面理解。这一贡献的基础是广泛的文献综述和不同层次的详细系统分析。主要研究成果包括产品开发方法的新应用模式。最后,以某自动导引车产品服务系统为例,对分析结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilient Design of Product Service Systems with Automated Guided Vehicles
Automated guided vehicles undertake complex transportation tasks, for instance, in production and storage systems. In recent years, an increased focus on sustainability has occurred as the effects of ongoing climate change have become more apparent. Engineers are searching intensively for ways to design technical systems that are not only environmentally sustainable, but are also resilient to the challenges of the changing climate and other environmental conditions. The production of automated guided vehicles requires considerable resources; therefore, a long operation time is desirable for overall sustainability. The performance of transportation tasks requires certain processes, such as control, path planning, coordination/synchronization, and maintenance and update processes—the latter are also very important for a long operation time. This article proposes understanding these processes as services and to explore product service systems with automated guided vehicles. Due to their complexity, the efficient and safe operation of such systems can be at risk because of several factors, such as component faults, external attacks and disturbances. For several years both resilient control and resilience engineering have been researched as possible remedies. An extension of these two concepts to the early stages of system development processes and including the system’s hardware is proposed in this article. This extension is referred to as resilient design. A primary purpose of resilient design is sustainability through extended usability and planned updates. The main intention of this article is to provide a comprehensive understanding of resilient design through application to product service systems with automated guided vehicles. The basis for this contribution is an extensive literature review and detailed system analyses on different levels. The main research results include novel application modes for product development methods. The explanation of the results is supported by means of an illustrative example based on a product service system with automated guided vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Feedback Field-Weakening Techniques for Synchronous Machines with Permanent Magnets Synthetic Drivers’ Performance Measures Related to Vehicle Dynamics to Control Road Safety in Curves Diesel Particle Filter Requirements for Euro 7 Technology Continuously Regenerating Heavy-Duty Applications Hybridisation Concept of Light Vehicles Utilising an Electrified Planetary Gear Set A Co-Simulation Platform with Tire and Brake Thermal Model for the Analysis and Reproduction of Blanking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1