Yu Cai, Hongfu Zhu, Qiwu Shi, Ye Cheng, Lei Chang, Wanxia Huang
{"title":"用于调谐太赫兹波的ti2o3薄膜的优异光热转换","authors":"Yu Cai, Hongfu Zhu, Qiwu Shi, Ye Cheng, Lei Chang, Wanxia Huang","doi":"10.2139/ssrn.3942848","DOIUrl":null,"url":null,"abstract":"Dynamic tuning of terahertz (THz) wave is vital for the development of next generation THz devices. Utilization of solar energy for tuning THz waves is a promising, eco-friendly, and sustainable way to solve the long-standing energy crisis. Ti 2 O 3 with an ultra-narrow bandgap of 0.1eV exhibits intriguing thermal-induced metal-insulator transition(MIT), and possesses excellent photothermal conversion efficiency. Herein, Ti 2 O 3 film was fabricated by a two-step magnetron sputtering method, and exhibited excellent photothermal conversion efficiency of 90.45% and demonstrated temperature-dependent THz transmission characteristics with a wide-band at 0.1-1 THz. We supposed to combine photothermal conversion characteristics with temperature-dependent THz transmission properties of Ti 2 O 3 film, which could introduce solar light as the energy source for tuning THz waves. Our work will provide new sight for investigating MIT characteristics of Ti 2 O 3 at THz regime and exhibit huge potential in the application of tuning terahertz waves in outdoor scenarios in the future.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent Photothermal Conversion of Ti 2O 3 Film for Tuning Terahertz Waves\",\"authors\":\"Yu Cai, Hongfu Zhu, Qiwu Shi, Ye Cheng, Lei Chang, Wanxia Huang\",\"doi\":\"10.2139/ssrn.3942848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic tuning of terahertz (THz) wave is vital for the development of next generation THz devices. Utilization of solar energy for tuning THz waves is a promising, eco-friendly, and sustainable way to solve the long-standing energy crisis. Ti 2 O 3 with an ultra-narrow bandgap of 0.1eV exhibits intriguing thermal-induced metal-insulator transition(MIT), and possesses excellent photothermal conversion efficiency. Herein, Ti 2 O 3 film was fabricated by a two-step magnetron sputtering method, and exhibited excellent photothermal conversion efficiency of 90.45% and demonstrated temperature-dependent THz transmission characteristics with a wide-band at 0.1-1 THz. We supposed to combine photothermal conversion characteristics with temperature-dependent THz transmission properties of Ti 2 O 3 film, which could introduce solar light as the energy source for tuning THz waves. Our work will provide new sight for investigating MIT characteristics of Ti 2 O 3 at THz regime and exhibit huge potential in the application of tuning terahertz waves in outdoor scenarios in the future.\",\"PeriodicalId\":10639,\"journal\":{\"name\":\"Computational Materials Science eJournal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3942848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3942848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Excellent Photothermal Conversion of Ti 2O 3 Film for Tuning Terahertz Waves
Dynamic tuning of terahertz (THz) wave is vital for the development of next generation THz devices. Utilization of solar energy for tuning THz waves is a promising, eco-friendly, and sustainable way to solve the long-standing energy crisis. Ti 2 O 3 with an ultra-narrow bandgap of 0.1eV exhibits intriguing thermal-induced metal-insulator transition(MIT), and possesses excellent photothermal conversion efficiency. Herein, Ti 2 O 3 film was fabricated by a two-step magnetron sputtering method, and exhibited excellent photothermal conversion efficiency of 90.45% and demonstrated temperature-dependent THz transmission characteristics with a wide-band at 0.1-1 THz. We supposed to combine photothermal conversion characteristics with temperature-dependent THz transmission properties of Ti 2 O 3 film, which could introduce solar light as the energy source for tuning THz waves. Our work will provide new sight for investigating MIT characteristics of Ti 2 O 3 at THz regime and exhibit huge potential in the application of tuning terahertz waves in outdoor scenarios in the future.