{"title":"金属-水界面激光诱导击穿光谱","authors":"Honoh Suzuki, H. Nishikawa, I.‐Yin Sandy Lee","doi":"10.1039/B202597C","DOIUrl":null,"url":null,"abstract":"Visible light emission from metal–water interfaces at laser-induced breakdown (LIB) has been observed for aluminium, titanium and platinum. The spectra are found to consist of broadband continuum without any discrete atomic lines, which may be useful as a pulsed light source for spectroscopy. A simple thermal diffusion model combined with blackbody radiation is described, the numerical result of which agrees fairly well with the observed spectra.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":"17 1","pages":"88-90"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Laser-induced breakdown spectroscopy at metal–water interfaces\",\"authors\":\"Honoh Suzuki, H. Nishikawa, I.‐Yin Sandy Lee\",\"doi\":\"10.1039/B202597C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible light emission from metal–water interfaces at laser-induced breakdown (LIB) has been observed for aluminium, titanium and platinum. The spectra are found to consist of broadband continuum without any discrete atomic lines, which may be useful as a pulsed light source for spectroscopy. A simple thermal diffusion model combined with blackbody radiation is described, the numerical result of which agrees fairly well with the observed spectra.\",\"PeriodicalId\":20106,\"journal\":{\"name\":\"PhysChemComm\",\"volume\":\"17 1\",\"pages\":\"88-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhysChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/B202597C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B202597C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser-induced breakdown spectroscopy at metal–water interfaces
Visible light emission from metal–water interfaces at laser-induced breakdown (LIB) has been observed for aluminium, titanium and platinum. The spectra are found to consist of broadband continuum without any discrete atomic lines, which may be useful as a pulsed light source for spectroscopy. A simple thermal diffusion model combined with blackbody radiation is described, the numerical result of which agrees fairly well with the observed spectra.