电场法制备聚咔唑纳米纤维及其电导率研究

S. H. Hosseini, Amir Abbas Kazemi, Seyed Arash Hosseini
{"title":"电场法制备聚咔唑纳米纤维及其电导率研究","authors":"S. H. Hosseini, Amir Abbas Kazemi, Seyed Arash Hosseini","doi":"10.3390/nanomanufacturing3010007","DOIUrl":null,"url":null,"abstract":"In conventional chemical and electrochemical oxidation methods, it is very difficult to control the active centers, and the average prepared polymers are short and wide. The use of an electric field creates the most stable intermediate form of active centers, as well as permitting a longer half-life. Therefore, this increases the physical resistance and electrical conductivity of the polymer. In this paper, polycarbazole nanofibers were prepared using an electric field, reporting on its influences on the polymerization of carbazole. Therefore, its electrical conductivity and some physical properties were investigated. We observed the nanofibers’ shape, increasing electrical conductivity, thermal resistance and a higher molecular weight with the synthesized polycarbazole under an electric field compared to the polymer synthesized in the same conditions in the absence of an electric field. First, we chemically synthesized polycarbazole at different times. Additionally, to find the optimizing conditions, we changed certain parameters, such as the ratio of the obtained molar of initiator to monomer, the oxidant, initiator and solvent, separately, and compared the obtained results. Then, we repeated this reaction in the best conditions and under different electric fields in constant time, allowing us to characterize the shape, mass and conductivity. Next, the polymerization was carried out at the best electric field in different times. Finally, the best time and amount of electric field for polymerization were determined. The electrical conductivity of polycarbazoles was studied with the four-probe method. The conductivity of the films oxidized using FeCl3 (dry) and protonated with p-toluenesulfonic acid (PTSA) at 3 h was higher than 8.9 × 10−4 S/cm under a 12 KV/m electric field. Additionally, the results showed an enhanced thermal resistance to ageing.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity\",\"authors\":\"S. H. Hosseini, Amir Abbas Kazemi, Seyed Arash Hosseini\",\"doi\":\"10.3390/nanomanufacturing3010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In conventional chemical and electrochemical oxidation methods, it is very difficult to control the active centers, and the average prepared polymers are short and wide. The use of an electric field creates the most stable intermediate form of active centers, as well as permitting a longer half-life. Therefore, this increases the physical resistance and electrical conductivity of the polymer. In this paper, polycarbazole nanofibers were prepared using an electric field, reporting on its influences on the polymerization of carbazole. Therefore, its electrical conductivity and some physical properties were investigated. We observed the nanofibers’ shape, increasing electrical conductivity, thermal resistance and a higher molecular weight with the synthesized polycarbazole under an electric field compared to the polymer synthesized in the same conditions in the absence of an electric field. First, we chemically synthesized polycarbazole at different times. Additionally, to find the optimizing conditions, we changed certain parameters, such as the ratio of the obtained molar of initiator to monomer, the oxidant, initiator and solvent, separately, and compared the obtained results. Then, we repeated this reaction in the best conditions and under different electric fields in constant time, allowing us to characterize the shape, mass and conductivity. Next, the polymerization was carried out at the best electric field in different times. Finally, the best time and amount of electric field for polymerization were determined. The electrical conductivity of polycarbazoles was studied with the four-probe method. The conductivity of the films oxidized using FeCl3 (dry) and protonated with p-toluenesulfonic acid (PTSA) at 3 h was higher than 8.9 × 10−4 S/cm under a 12 KV/m electric field. Additionally, the results showed an enhanced thermal resistance to ageing.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/nanomanufacturing3010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/nanomanufacturing3010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在传统的化学和电化学氧化方法中,活性中心很难控制,而且平均制备的聚合物短而宽。电场的使用创造了最稳定的中间形式的活性中心,以及允许较长的半衰期。因此,这增加了聚合物的物理电阻和导电性。本文采用电场法制备了聚咔唑纳米纤维,并报道了电场对咔唑聚合的影响。因此,对其电导率和一些物理性质进行了研究。我们观察到在电场条件下合成的聚咔唑纳米纤维的形状、电导率、热阻和分子量都比在无电场条件下合成的聚合物高。首先,我们在不同的时间化学合成聚咔唑。此外,我们还分别改变了引发剂与单体的摩尔比、氧化剂、引发剂和溶剂的摩尔比等参数,并对得到的结果进行了比较。然后,我们在最佳条件下和不同电场下在恒定时间内重复该反应,使我们能够表征形状,质量和电导率。然后,在最佳电场条件下,在不同时间进行聚合。最后确定了最佳聚合时间和电场量。用四探针法研究了聚咔唑的电导率。在12 KV/m的电场下,FeCl3(干)氧化和对甲苯磺酸(PTSA)质子化3 h后,薄膜的电导率高于8.9 × 10−4 S/cm。此外,结果表明,提高了抗老化的耐热性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity
In conventional chemical and electrochemical oxidation methods, it is very difficult to control the active centers, and the average prepared polymers are short and wide. The use of an electric field creates the most stable intermediate form of active centers, as well as permitting a longer half-life. Therefore, this increases the physical resistance and electrical conductivity of the polymer. In this paper, polycarbazole nanofibers were prepared using an electric field, reporting on its influences on the polymerization of carbazole. Therefore, its electrical conductivity and some physical properties were investigated. We observed the nanofibers’ shape, increasing electrical conductivity, thermal resistance and a higher molecular weight with the synthesized polycarbazole under an electric field compared to the polymer synthesized in the same conditions in the absence of an electric field. First, we chemically synthesized polycarbazole at different times. Additionally, to find the optimizing conditions, we changed certain parameters, such as the ratio of the obtained molar of initiator to monomer, the oxidant, initiator and solvent, separately, and compared the obtained results. Then, we repeated this reaction in the best conditions and under different electric fields in constant time, allowing us to characterize the shape, mass and conductivity. Next, the polymerization was carried out at the best electric field in different times. Finally, the best time and amount of electric field for polymerization were determined. The electrical conductivity of polycarbazoles was studied with the four-probe method. The conductivity of the films oxidized using FeCl3 (dry) and protonated with p-toluenesulfonic acid (PTSA) at 3 h was higher than 8.9 × 10−4 S/cm under a 12 KV/m electric field. Additionally, the results showed an enhanced thermal resistance to ageing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomanufacturing and Metrology
Nanomanufacturing and Metrology Materials Science-Materials Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
36
期刊介绍: Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing
期刊最新文献
Fabrication of Microstructure Arrays via Localized Electrochemical Deposition Super-Resolution by Localized Plasmonic Structured Illumination Microscopy Using Self-Assembled Nanoparticle Substrates Fluorescence-Based Calibration Model for In-Situ Measurement of Micro-scaled Lubricant Thickness Distribution at Indentation Interface Experimental Study of Electrical-Assisted Nanomachining of Monocrystalline Copper Using Customized Tungsten Tip A New Kind of Atomic Force Microscopy Scan Control Enabled by Artificial Intelligence: Concept for Achieving Tip and Sample Safety Through Asymmetric Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1