利用地震偏移组实现热盐精细结构的实时可视化

G.G. Buffett , J.L. Pelegrí , J. de la Puente , R. Carbonell
{"title":"利用地震偏移组实现热盐精细结构的实时可视化","authors":"G.G. Buffett ,&nbsp;J.L. Pelegrí ,&nbsp;J. de la Puente ,&nbsp;R. Carbonell","doi":"10.1016/j.mio.2012.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic oceanography is based on the passage of a regularly repeating acoustic impulsive source and an acquisition streamer along the surface of the ocean, and on summing together all signals reflected from temperature and salinity<span> interfaces in the ocean (where there are acoustic impedance contrasts). Due to the inherent redundancy of the method, random noise is attenuated, while signal is preserved; however, if the original signal-to-noise ratio is large enough, one need not use data from the entire streamer to create a 2D profile. A processing scheme is here devised to obtain consecutive images, known as stacks, of the structure of the water column. The scheme, named Seismic Offset Groups (SOG), consists in splitting the data from the whole streamer at a given geographical position into data produced by different streamer subsets. The method is illustrated by partitioning data from a 5-km long streamer into 7 offset groups separated by 3.5 min in time, thereby imaging the same seafloor-referenced location over a period of 21 min. As the streamer passes over a fixed geographical point, motions within the water column are observed. Each stack, created with a subset of the complete streamer, can therefore be considered an image of the water column at a particular time step (animation frame). In this way each image shows a different thermohaline fabric and the animation allows us to visualize internal ocean motions.</span></p></div>","PeriodicalId":100922,"journal":{"name":"Methods in Oceanography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mio.2012.07.003","citationCount":"2","resultStr":"{\"title\":\"Real time visualization of thermohaline finestructure using Seismic Offset Groups\",\"authors\":\"G.G. Buffett ,&nbsp;J.L. Pelegrí ,&nbsp;J. de la Puente ,&nbsp;R. Carbonell\",\"doi\":\"10.1016/j.mio.2012.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismic oceanography is based on the passage of a regularly repeating acoustic impulsive source and an acquisition streamer along the surface of the ocean, and on summing together all signals reflected from temperature and salinity<span> interfaces in the ocean (where there are acoustic impedance contrasts). Due to the inherent redundancy of the method, random noise is attenuated, while signal is preserved; however, if the original signal-to-noise ratio is large enough, one need not use data from the entire streamer to create a 2D profile. A processing scheme is here devised to obtain consecutive images, known as stacks, of the structure of the water column. The scheme, named Seismic Offset Groups (SOG), consists in splitting the data from the whole streamer at a given geographical position into data produced by different streamer subsets. The method is illustrated by partitioning data from a 5-km long streamer into 7 offset groups separated by 3.5 min in time, thereby imaging the same seafloor-referenced location over a period of 21 min. As the streamer passes over a fixed geographical point, motions within the water column are observed. Each stack, created with a subset of the complete streamer, can therefore be considered an image of the water column at a particular time step (animation frame). In this way each image shows a different thermohaline fabric and the animation allows us to visualize internal ocean motions.</span></p></div>\",\"PeriodicalId\":100922,\"journal\":{\"name\":\"Methods in Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mio.2012.07.003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211122012000060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211122012000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地震海洋学是基于沿海洋表面有规律重复的声脉冲源和采集拖缆的通道,以及海洋中温度和盐度界面反射的所有信号的总和(有声阻抗对比的地方)。由于该方法固有的冗余性,在保留信号的同时,减小了随机噪声;然而,如果原始信噪比足够大,则不需要使用来自整个拖缆的数据来创建2D剖面。这里设计了一种处理方案,以获得水柱结构的连续图像,称为堆栈。该方案被称为地震偏移组(Seismic Offset Groups, SOG),它将给定地理位置的整个拖缆的数据拆分为由不同的拖缆子集产生的数据。该方法通过将5公里长的拖缆数据划分为7个偏移组,间隔时间为3.5分钟,从而在21分钟的时间内对同一海底参考位置进行成像。当拖缆经过固定的地理点时,观察水柱内的运动。因此,用完整流线的子集创建的每个堆栈可以被视为特定时间步(动画帧)的水柱图像。通过这种方式,每张图像都显示了不同的温盐结构,动画使我们能够可视化海洋内部的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real time visualization of thermohaline finestructure using Seismic Offset Groups

Seismic oceanography is based on the passage of a regularly repeating acoustic impulsive source and an acquisition streamer along the surface of the ocean, and on summing together all signals reflected from temperature and salinity interfaces in the ocean (where there are acoustic impedance contrasts). Due to the inherent redundancy of the method, random noise is attenuated, while signal is preserved; however, if the original signal-to-noise ratio is large enough, one need not use data from the entire streamer to create a 2D profile. A processing scheme is here devised to obtain consecutive images, known as stacks, of the structure of the water column. The scheme, named Seismic Offset Groups (SOG), consists in splitting the data from the whole streamer at a given geographical position into data produced by different streamer subsets. The method is illustrated by partitioning data from a 5-km long streamer into 7 offset groups separated by 3.5 min in time, thereby imaging the same seafloor-referenced location over a period of 21 min. As the streamer passes over a fixed geographical point, motions within the water column are observed. Each stack, created with a subset of the complete streamer, can therefore be considered an image of the water column at a particular time step (animation frame). In this way each image shows a different thermohaline fabric and the animation allows us to visualize internal ocean motions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Final issue of Methods in Oceanography Measuring pH in the Arctic Ocean: Colorimetric method or SeaFET? A topological approach for quantitative comparisons of ocean model fields to satellite ocean color data Optical methods for estimating apparent density of sediment in suspension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1