Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton
{"title":"使用无创手气味分析预测SARS-CoV-2变异:一项试点研究","authors":"Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton","doi":"10.3390/analytica4020016","DOIUrl":null,"url":null,"abstract":"The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study\",\"authors\":\"Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton\",\"doi\":\"10.3390/analytica4020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.\",\"PeriodicalId\":7829,\"journal\":{\"name\":\"Analytica\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytica4020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study
The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.