可视化模式驱动的大数据探索。

Michael Behrisch, Tobias Schreck, Robert Krüger, Nils Gehlenborg, Fritz Lekschas, Hanspeter Pfister
{"title":"可视化模式驱动的大数据探索。","authors":"Michael Behrisch, Tobias Schreck, Robert Krüger, Nils Gehlenborg, Fritz Lekschas, Hanspeter Pfister","doi":"10.1109/BDVA.2018.8534028","DOIUrl":null,"url":null,"abstract":"<p><p>Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi-automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.</p>","PeriodicalId":91097,"journal":{"name":"International journal of psychology and behavioral sciences","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visual Pattern-Driven Exploration of Big Data.\",\"authors\":\"Michael Behrisch, Tobias Schreck, Robert Krüger, Nils Gehlenborg, Fritz Lekschas, Hanspeter Pfister\",\"doi\":\"10.1109/BDVA.2018.8534028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi-automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.</p>\",\"PeriodicalId\":91097,\"journal\":{\"name\":\"International journal of psychology and behavioral sciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of psychology and behavioral sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BDVA.2018.8534028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of psychology and behavioral sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BDVA.2018.8534028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模式提取算法通过将重复出现的数据属性转化为紧凑的表示形式,使人们能够深入了解当今日益增长的数据集。然而,实际问题也随之而来:随着数据量和复杂性的增加,模式的数量也在增加,给分析人员留下了巨大的结果空间。目前的算法,尤其是可视化方法,往往无法回答对全面了解模式分布和支持、其质量以及与分析任务的相关性至关重要的核心概述问题。为了应对这些挑战,我们开发了一种可视化分析管道,旨在以半自动方式对结果空间进行模式驱动探索。具体来说,我们将图像特征分析与无监督学习相结合,将模式空间划分为可解释的、连贯的区块,这些区块应在后续的深入分析中优先考虑。在我们的分析方案中,没有给出地面实况。因此,我们采用并评估了从图像特征向量的距离分布和衍生聚类模型中得出的新型质量指标,以指导特征选择过程。我们以交互方式将结果可视化,允许用户从概览到细节深入到模式空间,并在地球观测和生物医学基因组数据的两个案例研究中演示了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Pattern-Driven Exploration of Big Data.

Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi-automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of COVID-19 on mental health of adolescents: A theoretical perspective Inequalities based on social categories, culture, race, religion and ethnicity Gender microaggressions towards females and its negative effects on mental health: A review Gender equality at work space Prevalence of internet gaming disorder in Haryana: Association with temperament and state trait anxiety with internet gaming disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1