O. Sokolov, Aleksander Hosovsky, V. Ivanov, I. Pavlenko
{"title":"气动肌肉执行器运动监测系统","authors":"O. Sokolov, Aleksander Hosovsky, V. Ivanov, I. Pavlenko","doi":"10.21272/jes.2023.10(1).a1","DOIUrl":null,"url":null,"abstract":"Recent advancements in soft pneumatic robot research have demonstrated these robots’ capability to interact with the environment and humans in various ways. Their ability to move over rough terrain and grasp objects of irregular shape, regardless of position, has garnered significant interest in developing new pneumatic soft robots. Integrating industrial design with related technologies holds great promise for the future, potentially bringing about a new lifestyle and revolutionizing the industry. As robots become increasingly practical, there is a growing need for sensitivity, robustness, and efficiency improvements. It is anticipated that the development of these intelligent pneumatic soft robots will play a critical role in serving the needs of society and production shortly. The present article is concerned with developing a system for monitoring a pneumatic robot’s parameters, including a spatial coordinate system. The focus is on utilizing the relationship between the coordinates and pressure to model the movement of the soft robot within the MATLAB simulation environment.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movement Monitoring System for a Pneumatic Muscle\\nActuator\",\"authors\":\"O. Sokolov, Aleksander Hosovsky, V. Ivanov, I. Pavlenko\",\"doi\":\"10.21272/jes.2023.10(1).a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in soft pneumatic robot research have demonstrated these robots’ capability to interact with the environment and humans in various ways. Their ability to move over rough terrain and grasp objects of irregular shape, regardless of position, has garnered significant interest in developing new pneumatic soft robots. Integrating industrial design with related technologies holds great promise for the future, potentially bringing about a new lifestyle and revolutionizing the industry. As robots become increasingly practical, there is a growing need for sensitivity, robustness, and efficiency improvements. It is anticipated that the development of these intelligent pneumatic soft robots will play a critical role in serving the needs of society and production shortly. The present article is concerned with developing a system for monitoring a pneumatic robot’s parameters, including a spatial coordinate system. The focus is on utilizing the relationship between the coordinates and pressure to model the movement of the soft robot within the MATLAB simulation environment.\",\"PeriodicalId\":30589,\"journal\":{\"name\":\"Tikrit Journal of Engineering Sciences\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tikrit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jes.2023.10(1).a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jes.2023.10(1).a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Movement Monitoring System for a Pneumatic Muscle
Actuator
Recent advancements in soft pneumatic robot research have demonstrated these robots’ capability to interact with the environment and humans in various ways. Their ability to move over rough terrain and grasp objects of irregular shape, regardless of position, has garnered significant interest in developing new pneumatic soft robots. Integrating industrial design with related technologies holds great promise for the future, potentially bringing about a new lifestyle and revolutionizing the industry. As robots become increasingly practical, there is a growing need for sensitivity, robustness, and efficiency improvements. It is anticipated that the development of these intelligent pneumatic soft robots will play a critical role in serving the needs of society and production shortly. The present article is concerned with developing a system for monitoring a pneumatic robot’s parameters, including a spatial coordinate system. The focus is on utilizing the relationship between the coordinates and pressure to model the movement of the soft robot within the MATLAB simulation environment.