尖晶石和钙钛矿结构氧化物锂导电材料的合成及电化学特性研究

Hanna Mas, O. Khomenko, I. Lisovskyi, V. Khomenko, S. Solopan, A. Belous
{"title":"尖晶石和钙钛矿结构氧化物锂导电材料的合成及电化学特性研究","authors":"Hanna Mas, O. Khomenko, I. Lisovskyi, V. Khomenko, S. Solopan, A. Belous","doi":"10.33609/2708-129x.89.01.2023.3-17","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LIBs) are widely used in electronic devices due to their numerous advantages, namely high energy density, high capacity, and long service life. One of the important components of a battery is the anode. In order to ensure high characteristics of LIB, the anode material must have high capacity, high ionic and electronic conductivities, and low cost. However, commonly used anode materials in lithium-ion batteries have a number of disadvantages. For example, a graphite-based anode is characterized by significant changes in volume during intercalation/deintercalation of lithium ions, high energy losses, and rapid deterioration of characteristics at high discharge/charge rates; Li4Ti5O12 have a low theoretical specific capacity, low electronic conductivity and low diffusion rate of lithium ions. \nThus, the search for anode materials with high capacity and capability rate, as well as small volume change during lithium intercalation/deintercalation, remains an urgent task. A promising way may be the use of materials with intercalation pseudocapacitive behavior of charge accumulation, which occurs due to the intercalation of ions in tunnels or layers of active materials without a crystallographic phase transition. LixLa2/3-x/3TiO3 is well known as a superionic conductor with a high ionic conductivity σ ≈ 10–3 S/cm at room temperature. It crystallizes in a perovskite-type structure that consists of a framework of TiO6 octahedra stabilized by La atoms, and has nume­rous vacancies in the unoccupied positions 18d and 6a, that could participate in the stora­ge and motion of Li ions. \nElectrochemical characteristics of LixLa2/3-x/3TiO3 (x = 0.35 and 0.5) anode materials with a perovskite structure were investigated and compared with the electrochemical characteristics of Li4Ti5O12 with a layered spinel structure.","PeriodicalId":23394,"journal":{"name":"Ukrainian Chemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SYNTHESIS AND INVESTIGATION OF ELECTROCHEMICAL CHARACTERISTICS OF OXIDE Li-CONDUCTIVE MATERIALS WITH SPINEL AND PEROSKITE STRUCTURES\",\"authors\":\"Hanna Mas, O. Khomenko, I. Lisovskyi, V. Khomenko, S. Solopan, A. Belous\",\"doi\":\"10.33609/2708-129x.89.01.2023.3-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries (LIBs) are widely used in electronic devices due to their numerous advantages, namely high energy density, high capacity, and long service life. One of the important components of a battery is the anode. In order to ensure high characteristics of LIB, the anode material must have high capacity, high ionic and electronic conductivities, and low cost. However, commonly used anode materials in lithium-ion batteries have a number of disadvantages. For example, a graphite-based anode is characterized by significant changes in volume during intercalation/deintercalation of lithium ions, high energy losses, and rapid deterioration of characteristics at high discharge/charge rates; Li4Ti5O12 have a low theoretical specific capacity, low electronic conductivity and low diffusion rate of lithium ions. \\nThus, the search for anode materials with high capacity and capability rate, as well as small volume change during lithium intercalation/deintercalation, remains an urgent task. A promising way may be the use of materials with intercalation pseudocapacitive behavior of charge accumulation, which occurs due to the intercalation of ions in tunnels or layers of active materials without a crystallographic phase transition. LixLa2/3-x/3TiO3 is well known as a superionic conductor with a high ionic conductivity σ ≈ 10–3 S/cm at room temperature. It crystallizes in a perovskite-type structure that consists of a framework of TiO6 octahedra stabilized by La atoms, and has nume­rous vacancies in the unoccupied positions 18d and 6a, that could participate in the stora­ge and motion of Li ions. \\nElectrochemical characteristics of LixLa2/3-x/3TiO3 (x = 0.35 and 0.5) anode materials with a perovskite structure were investigated and compared with the electrochemical characteristics of Li4Ti5O12 with a layered spinel structure.\",\"PeriodicalId\":23394,\"journal\":{\"name\":\"Ukrainian Chemistry Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33609/2708-129x.89.01.2023.3-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33609/2708-129x.89.01.2023.3-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池具有能量密度高、容量大、使用寿命长等优点,在电子器件中得到了广泛的应用。电池的一个重要组成部分是阳极。为了保证锂离子电池的高特性,负极材料必须具有高容量、高离子电导率和高电子电导率以及低成本。然而,锂离子电池中常用的负极材料有许多缺点。例如,石墨基阳极的特点是在锂离子插入/脱嵌过程中体积发生显著变化,能量损失高,在高放电/充电速率下特性迅速恶化;Li4Ti5O12具有低理论比容量、低电子导电性和低锂离子扩散速率的特点。因此,寻找具有高容量和容量率,且在锂插入/脱嵌过程中体积变化小的阳极材料仍然是一个紧迫的任务。一种很有前途的方法可能是利用具有电荷积累的插层赝电容行为的材料,这种行为是由于离子在活性材料的隧道或层中插入而没有晶体学相变而发生的。LixLa2/3-x/3TiO3是一种在室温下具有高离子电导率σ≈10-3 S/cm的超离子导体。它结晶为钙钛矿型结构,由La原子稳定的TiO6八面体框架组成,并且在18d和6a的未占用位置有许多空位,可以参与Li离子的储存和运动。研究了钙钛矿结构LixLa2/3-x/3TiO3 (x = 0.35和0.5)负极材料的电化学特性,并与层状尖晶石结构Li4Ti5O12的电化学特性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SYNTHESIS AND INVESTIGATION OF ELECTROCHEMICAL CHARACTERISTICS OF OXIDE Li-CONDUCTIVE MATERIALS WITH SPINEL AND PEROSKITE STRUCTURES
Lithium-ion batteries (LIBs) are widely used in electronic devices due to their numerous advantages, namely high energy density, high capacity, and long service life. One of the important components of a battery is the anode. In order to ensure high characteristics of LIB, the anode material must have high capacity, high ionic and electronic conductivities, and low cost. However, commonly used anode materials in lithium-ion batteries have a number of disadvantages. For example, a graphite-based anode is characterized by significant changes in volume during intercalation/deintercalation of lithium ions, high energy losses, and rapid deterioration of characteristics at high discharge/charge rates; Li4Ti5O12 have a low theoretical specific capacity, low electronic conductivity and low diffusion rate of lithium ions. Thus, the search for anode materials with high capacity and capability rate, as well as small volume change during lithium intercalation/deintercalation, remains an urgent task. A promising way may be the use of materials with intercalation pseudocapacitive behavior of charge accumulation, which occurs due to the intercalation of ions in tunnels or layers of active materials without a crystallographic phase transition. LixLa2/3-x/3TiO3 is well known as a superionic conductor with a high ionic conductivity σ ≈ 10–3 S/cm at room temperature. It crystallizes in a perovskite-type structure that consists of a framework of TiO6 octahedra stabilized by La atoms, and has nume­rous vacancies in the unoccupied positions 18d and 6a, that could participate in the stora­ge and motion of Li ions. Electrochemical characteristics of LixLa2/3-x/3TiO3 (x = 0.35 and 0.5) anode materials with a perovskite structure were investigated and compared with the electrochemical characteristics of Li4Ti5O12 with a layered spinel structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOLVATOCHROMIC PROPERTIES OF SOME 6,7-DIHYDROXYBENZOPYRYLLIUM PERCHLORATE DERIVATIVES ACHIEVEMENTS IN PHYSICAL CHEMISTRY IN THE FIELD OF MICROSCOPY AND VISUALIZATION OF NANOSYSTEMS SYNTHESIS AND STUDY OF NANO-SIZED COMPLEX OF Fe(III) WITH ETHYLENEDIAMINEDISUCCINIC ACID EFFECT OF POLYMER MODIFIER ON THE MOR­PHO­LOGICAL AND SEPARATION PROPERTIES OF ASYMMETRIC MICROFILTRATION MEMBRANES ARYLTELLUROCHLORINATION OF 5-ARYL(HETERYL)SUBSTITUTED N-ALLYL-1,2,4-TRIAZOLE-3-THIONE DERIVATIVES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1