大流行时代食品补充剂的机器学习销售预测

Funda Ahmetoğlu Taşdemir
{"title":"大流行时代食品补充剂的机器学习销售预测","authors":"Funda Ahmetoğlu Taşdemir","doi":"10.54560/jracr.v12i2.326","DOIUrl":null,"url":null,"abstract":"The Covid-19 pandemic has brought a lot of concerns about the operational and financial situation of businesses. Forecasting is crucial as it guides businesses through these critical points. Forecasting has become even more critical in the pandemic environment and therefore the necessity of using an accurate forecasting method has increased. Taking this into consideration, in this study, intelligent machine learning methods, namely; Grey Model (GM), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are applied to make a short-term prediction of a food supplement, a product whose demand increased with the pandemic situation. Eighty-five percent of the historical data is used for training purposes and fifteen percent of the data is used for measuring accuracy. The accuracy of the models employed is improved with parameter optimization The accuracy performance indicator Mean Absolute Percentage Error (MAPE) showed that all methods give superior results when the historical data has an increasing sales trend. This study presents an important consideration for businesses and has a potential to be generalized for a business whose sales have an increasing trend not only because of the pandemic but also for any reason.","PeriodicalId":31887,"journal":{"name":"Journal of Risk Analysis and Crisis Response JRACR","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Sales Forecasting for Food Supplements in Pandemic Era\",\"authors\":\"Funda Ahmetoğlu Taşdemir\",\"doi\":\"10.54560/jracr.v12i2.326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Covid-19 pandemic has brought a lot of concerns about the operational and financial situation of businesses. Forecasting is crucial as it guides businesses through these critical points. Forecasting has become even more critical in the pandemic environment and therefore the necessity of using an accurate forecasting method has increased. Taking this into consideration, in this study, intelligent machine learning methods, namely; Grey Model (GM), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are applied to make a short-term prediction of a food supplement, a product whose demand increased with the pandemic situation. Eighty-five percent of the historical data is used for training purposes and fifteen percent of the data is used for measuring accuracy. The accuracy of the models employed is improved with parameter optimization The accuracy performance indicator Mean Absolute Percentage Error (MAPE) showed that all methods give superior results when the historical data has an increasing sales trend. This study presents an important consideration for businesses and has a potential to be generalized for a business whose sales have an increasing trend not only because of the pandemic but also for any reason.\",\"PeriodicalId\":31887,\"journal\":{\"name\":\"Journal of Risk Analysis and Crisis Response JRACR\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk Analysis and Crisis Response JRACR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54560/jracr.v12i2.326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Analysis and Crisis Response JRACR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54560/jracr.v12i2.326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新冠肺炎疫情给企业的经营和财务状况带来了很多担忧。预测是至关重要的,因为它指导企业通过这些关键点。在大流行的环境中,预报变得更加重要,因此使用准确预报方法的必要性增加了。考虑到这一点,在本研究中,智能机器学习方法,即;应用灰色模型(GM)、人工神经网络(ANN)和支持向量机(SVM)对一种随着疫情需求增加的食品补充剂进行短期预测。85%的历史数据用于培训目的,15%的数据用于测量准确性。准确度性能指标平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)表明,当历史数据有销售增长的趋势时,所有方法的结果都很好。这项研究为企业提供了一个重要的考虑因素,并有可能推广到销售不仅因为大流行而且因为任何原因而呈增长趋势的企业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Sales Forecasting for Food Supplements in Pandemic Era
The Covid-19 pandemic has brought a lot of concerns about the operational and financial situation of businesses. Forecasting is crucial as it guides businesses through these critical points. Forecasting has become even more critical in the pandemic environment and therefore the necessity of using an accurate forecasting method has increased. Taking this into consideration, in this study, intelligent machine learning methods, namely; Grey Model (GM), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are applied to make a short-term prediction of a food supplement, a product whose demand increased with the pandemic situation. Eighty-five percent of the historical data is used for training purposes and fifteen percent of the data is used for measuring accuracy. The accuracy of the models employed is improved with parameter optimization The accuracy performance indicator Mean Absolute Percentage Error (MAPE) showed that all methods give superior results when the historical data has an increasing sales trend. This study presents an important consideration for businesses and has a potential to be generalized for a business whose sales have an increasing trend not only because of the pandemic but also for any reason.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊最新文献
The 10th International Conference on Information Technology and Quantitative Management (ITQM 2023), August 12-14, Oxford, UK: Global Collaboration to Enhance Information Technology & Quantitative Management Liquefied Petroleum Gas Stations Disaster Risk Preparedness Assessment of Port Harcourt City, Nigeria The Impact of COVID-19 Prevention Policy on Stock Market Return of China The 7th Symposium on Disaster Risk Analysis and Management in Western China Was Successfully Held in Urumqi Research on the Impact of Green Bonds on Credit Risk of Manufacturing Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1