Mariana R. Camacho, E. Etchebehere, N. Tardelli, M. Delamain, Aline F.A. Vercosa, M. E. Takahashi, S. Q. Brunetto, I. Metze, C. Souza, J. Cerci, C. Ramos
{"title":"测量霍奇金淋巴瘤代谢肿瘤体积的多焦点分割方法的验证","authors":"Mariana R. Camacho, E. Etchebehere, N. Tardelli, M. Delamain, Aline F.A. Vercosa, M. E. Takahashi, S. Q. Brunetto, I. Metze, C. Souza, J. Cerci, C. Ramos","doi":"10.2967/jnmt.119.231118","DOIUrl":null,"url":null,"abstract":"Quantification of metabolic tumor volume (MTV) and total lesion glycolysis (TLG) can be time-consuming. We evaluated the performance of an automatic multifocal segmentation (MFS) method of quantification in patients with different stages of Hodgkin lymphoma, using the multiple VOI (MV) method as reference. Methods: This prospective bicentric study included 50 patients with Hodgkin lymphoma who underwent staging 18F-FGD PET/CT. The examinations were centrally reviewed and processed with commercial MFS software to obtain MTV and TLG using 2 fixed relative thresholds (40% and 20% of SUVmax) for each lesion. All PET/CT scans were processed using the MV and MFS methods. Interclass correlation coefficients and Bland–Altman plots were used for statistical analysis. Repeated calculations of MTV and TLG values by 2 observers with different degrees of PET/CT imaging experience were used to ascertain interobserver agreement on the MFS method. Results: The means and SDs obtained for the MTV with MV and MFS were, respectively, 736 ± 856 mL and 660 ± 699 mL for the 20% threshold and 313 ± 359 mL and 372 ± 434 mL for the 40% threshold. The time spent calculating the MTV was much shorter with the MFS method than with the MV method (median time, 11.6 min [range, 1–30 min] and 64.4 min [range, 1–240 min], respectively), especially in patients with advanced disease. Time spent was similar in patients with localized disease. There were no statistical differences between the MFS values obtained by the 2 different observers. Conclusion: MTV and TLG calculations using MFS are reproducible, generate similar results to those obtained with MV, and are much less timing-consuming. Main differences between the 2 methods were related to difficulties in avoiding overlay of VOIs in the MV technique. MV and MFS perform equally well in patients with a small number of lesions.","PeriodicalId":22799,"journal":{"name":"The Journal of Nuclear Medicine Technology","volume":"10 1","pages":"30 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Validation of a Multifocal Segmentation Method for Measuring Metabolic Tumor Volume in Hodgkin Lymphoma\",\"authors\":\"Mariana R. Camacho, E. Etchebehere, N. Tardelli, M. Delamain, Aline F.A. Vercosa, M. E. Takahashi, S. Q. Brunetto, I. Metze, C. Souza, J. Cerci, C. Ramos\",\"doi\":\"10.2967/jnmt.119.231118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantification of metabolic tumor volume (MTV) and total lesion glycolysis (TLG) can be time-consuming. We evaluated the performance of an automatic multifocal segmentation (MFS) method of quantification in patients with different stages of Hodgkin lymphoma, using the multiple VOI (MV) method as reference. Methods: This prospective bicentric study included 50 patients with Hodgkin lymphoma who underwent staging 18F-FGD PET/CT. The examinations were centrally reviewed and processed with commercial MFS software to obtain MTV and TLG using 2 fixed relative thresholds (40% and 20% of SUVmax) for each lesion. All PET/CT scans were processed using the MV and MFS methods. Interclass correlation coefficients and Bland–Altman plots were used for statistical analysis. Repeated calculations of MTV and TLG values by 2 observers with different degrees of PET/CT imaging experience were used to ascertain interobserver agreement on the MFS method. Results: The means and SDs obtained for the MTV with MV and MFS were, respectively, 736 ± 856 mL and 660 ± 699 mL for the 20% threshold and 313 ± 359 mL and 372 ± 434 mL for the 40% threshold. The time spent calculating the MTV was much shorter with the MFS method than with the MV method (median time, 11.6 min [range, 1–30 min] and 64.4 min [range, 1–240 min], respectively), especially in patients with advanced disease. Time spent was similar in patients with localized disease. There were no statistical differences between the MFS values obtained by the 2 different observers. Conclusion: MTV and TLG calculations using MFS are reproducible, generate similar results to those obtained with MV, and are much less timing-consuming. Main differences between the 2 methods were related to difficulties in avoiding overlay of VOIs in the MV technique. MV and MFS perform equally well in patients with a small number of lesions.\",\"PeriodicalId\":22799,\"journal\":{\"name\":\"The Journal of Nuclear Medicine Technology\",\"volume\":\"10 1\",\"pages\":\"30 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nuclear Medicine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2967/jnmt.119.231118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nuclear Medicine Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnmt.119.231118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of a Multifocal Segmentation Method for Measuring Metabolic Tumor Volume in Hodgkin Lymphoma
Quantification of metabolic tumor volume (MTV) and total lesion glycolysis (TLG) can be time-consuming. We evaluated the performance of an automatic multifocal segmentation (MFS) method of quantification in patients with different stages of Hodgkin lymphoma, using the multiple VOI (MV) method as reference. Methods: This prospective bicentric study included 50 patients with Hodgkin lymphoma who underwent staging 18F-FGD PET/CT. The examinations were centrally reviewed and processed with commercial MFS software to obtain MTV and TLG using 2 fixed relative thresholds (40% and 20% of SUVmax) for each lesion. All PET/CT scans were processed using the MV and MFS methods. Interclass correlation coefficients and Bland–Altman plots were used for statistical analysis. Repeated calculations of MTV and TLG values by 2 observers with different degrees of PET/CT imaging experience were used to ascertain interobserver agreement on the MFS method. Results: The means and SDs obtained for the MTV with MV and MFS were, respectively, 736 ± 856 mL and 660 ± 699 mL for the 20% threshold and 313 ± 359 mL and 372 ± 434 mL for the 40% threshold. The time spent calculating the MTV was much shorter with the MFS method than with the MV method (median time, 11.6 min [range, 1–30 min] and 64.4 min [range, 1–240 min], respectively), especially in patients with advanced disease. Time spent was similar in patients with localized disease. There were no statistical differences between the MFS values obtained by the 2 different observers. Conclusion: MTV and TLG calculations using MFS are reproducible, generate similar results to those obtained with MV, and are much less timing-consuming. Main differences between the 2 methods were related to difficulties in avoiding overlay of VOIs in the MV technique. MV and MFS perform equally well in patients with a small number of lesions.