E. Akinpelu, E. Fosso-Kankeu, F. Waanders, S. K. Ntwampe
{"title":"厌氧移动床生物膜反应器中高金属负荷条件下SRB生物还原COD和硫酸盐的研究","authors":"E. Akinpelu, E. Fosso-Kankeu, F. Waanders, S. K. Ntwampe","doi":"10.17758/eares4.eap1118236","DOIUrl":null,"url":null,"abstract":"The performance of an anaerobic moving bed biofilm reactor (MBBR) containing AnoxKaldnes K5 model for the treatment of raw acid mine drainage (AMD) was investigated for the reduction of sulphate and chemical oxygen demand using a consortium of sulphate reducing bacteria (SRB) dominated by Proteobacteria. The MBBR was enriched for 4 weeks, followed by introduction of raw AMD and sampling at intervals for 7 weeks. Maximum removal efficiency of COD was 99 % followed by 75 % sulphate reduction. The results showed that the bio-carrier is more suited for the COD reduction. Keywords— Acid mine drainage; Chemical oxygen demand; Heavy metals; moving bed biofilm reactor; Sulphate reducing bacteria.","PeriodicalId":8495,"journal":{"name":"ASETH-18,ACABES-18 & EBHSSS-18 Nov. 19-20 2018 Cape Town (South Africa)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biological Reduction of COD and Sulphate by SRB in Anaerobic Moving Bed Biofilm Reactor under High Metal Loading Conditions\",\"authors\":\"E. Akinpelu, E. Fosso-Kankeu, F. Waanders, S. K. Ntwampe\",\"doi\":\"10.17758/eares4.eap1118236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of an anaerobic moving bed biofilm reactor (MBBR) containing AnoxKaldnes K5 model for the treatment of raw acid mine drainage (AMD) was investigated for the reduction of sulphate and chemical oxygen demand using a consortium of sulphate reducing bacteria (SRB) dominated by Proteobacteria. The MBBR was enriched for 4 weeks, followed by introduction of raw AMD and sampling at intervals for 7 weeks. Maximum removal efficiency of COD was 99 % followed by 75 % sulphate reduction. The results showed that the bio-carrier is more suited for the COD reduction. Keywords— Acid mine drainage; Chemical oxygen demand; Heavy metals; moving bed biofilm reactor; Sulphate reducing bacteria.\",\"PeriodicalId\":8495,\"journal\":{\"name\":\"ASETH-18,ACABES-18 & EBHSSS-18 Nov. 19-20 2018 Cape Town (South Africa)\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASETH-18,ACABES-18 & EBHSSS-18 Nov. 19-20 2018 Cape Town (South Africa)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17758/eares4.eap1118236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASETH-18,ACABES-18 & EBHSSS-18 Nov. 19-20 2018 Cape Town (South Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17758/eares4.eap1118236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biological Reduction of COD and Sulphate by SRB in Anaerobic Moving Bed Biofilm Reactor under High Metal Loading Conditions
The performance of an anaerobic moving bed biofilm reactor (MBBR) containing AnoxKaldnes K5 model for the treatment of raw acid mine drainage (AMD) was investigated for the reduction of sulphate and chemical oxygen demand using a consortium of sulphate reducing bacteria (SRB) dominated by Proteobacteria. The MBBR was enriched for 4 weeks, followed by introduction of raw AMD and sampling at intervals for 7 weeks. Maximum removal efficiency of COD was 99 % followed by 75 % sulphate reduction. The results showed that the bio-carrier is more suited for the COD reduction. Keywords— Acid mine drainage; Chemical oxygen demand; Heavy metals; moving bed biofilm reactor; Sulphate reducing bacteria.