GPU编程中求解三对角系统的并行Thomas方法的发展-定常和非定常流动模拟

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2020-01-01 DOI:10.1051/meca/2020013
M. Souri, P. Akbarzadeh, H. M. Darian
{"title":"GPU编程中求解三对角系统的并行Thomas方法的发展-定常和非定常流动模拟","authors":"M. Souri, P. Akbarzadeh, H. M. Darian","doi":"10.1051/meca/2020013","DOIUrl":null,"url":null,"abstract":"The solution of tridiagonal system of equations using graphic processing units (GPU) is assessed. The parallel-Thomas-algorithm (PTA) is developed and the solution of PTA is compared to two known parallel algorithms, i.e. cyclic-reduction (CR) and parallel-cyclic-reduction (PCR). Lid-driven cavity problem is considered to assess these parallel approaches. This problem is also simulated using the classic Thomas algorithm that runs on a central processing unit (CPU). Runtimes and physical parameters of the mentioned GPU and CPU algorithms are compared. The results show that the speedup of CR, PCR and PTA against the CPU runtime is 4.4x,5.2x and 38.5x, respectively. Furthermore, the effect of coalesced and uncoalesced memory access to GPU global memory is examined for PTA, and a 2x-speedup is achieved for the coalesced memory access. Additionally, the PTA performance in a time dependent problem, the unsteady flow over a square, is assessed and a 9x-speedup is obtained against the CPU.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"62 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel Thomas approach development for solving tridiagonal systems in GPU programming − steady and unsteady flow simulation\",\"authors\":\"M. Souri, P. Akbarzadeh, H. M. Darian\",\"doi\":\"10.1051/meca/2020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of tridiagonal system of equations using graphic processing units (GPU) is assessed. The parallel-Thomas-algorithm (PTA) is developed and the solution of PTA is compared to two known parallel algorithms, i.e. cyclic-reduction (CR) and parallel-cyclic-reduction (PCR). Lid-driven cavity problem is considered to assess these parallel approaches. This problem is also simulated using the classic Thomas algorithm that runs on a central processing unit (CPU). Runtimes and physical parameters of the mentioned GPU and CPU algorithms are compared. The results show that the speedup of CR, PCR and PTA against the CPU runtime is 4.4x,5.2x and 38.5x, respectively. Furthermore, the effect of coalesced and uncoalesced memory access to GPU global memory is examined for PTA, and a 2x-speedup is achieved for the coalesced memory access. Additionally, the PTA performance in a time dependent problem, the unsteady flow over a square, is assessed and a 9x-speedup is obtained against the CPU.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2020013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2020013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3

摘要

利用图形处理单元(GPU)求解三对角线方程组。提出了并行托马斯算法(PTA),并将其求解结果与两种已知的并行算法,即循环还原算法(CR)和并行循环还原算法(PCR)进行了比较。考虑盖驱动空腔问题来评估这些并行方法。这个问题也可以使用运行在中央处理器(CPU)上的经典Thomas算法进行模拟。比较了上述GPU和CPU算法的运行时间和物理参数。结果表明,CR、PCR和PTA对CPU运行时间的加速分别为4.4倍、5.2倍和38.5倍。此外,研究了合并和非合并内存访问对PTA的GPU全局内存的影响,合并内存访问的速度提高了2倍。此外,还评估了PTA在时间相关问题(一个正方形上的非定常流)中的性能,并在CPU上获得了9倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Thomas approach development for solving tridiagonal systems in GPU programming − steady and unsteady flow simulation
The solution of tridiagonal system of equations using graphic processing units (GPU) is assessed. The parallel-Thomas-algorithm (PTA) is developed and the solution of PTA is compared to two known parallel algorithms, i.e. cyclic-reduction (CR) and parallel-cyclic-reduction (PCR). Lid-driven cavity problem is considered to assess these parallel approaches. This problem is also simulated using the classic Thomas algorithm that runs on a central processing unit (CPU). Runtimes and physical parameters of the mentioned GPU and CPU algorithms are compared. The results show that the speedup of CR, PCR and PTA against the CPU runtime is 4.4x,5.2x and 38.5x, respectively. Furthermore, the effect of coalesced and uncoalesced memory access to GPU global memory is examined for PTA, and a 2x-speedup is achieved for the coalesced memory access. Additionally, the PTA performance in a time dependent problem, the unsteady flow over a square, is assessed and a 9x-speedup is obtained against the CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1