改进钻石文档仓库模型

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2020-10-01 DOI:10.4018/ijdwm.2020100101
M. Azabou, Ameen Banjar, J. Feki
{"title":"改进钻石文档仓库模型","authors":"M. Azabou, Ameen Banjar, J. Feki","doi":"10.4018/ijdwm.2020100101","DOIUrl":null,"url":null,"abstract":"The data warehouse community has paid particular attention to the document warehouse (DocW) paradigm during the last two decades. However, some important issues related to the semantics are still pending and therefore need a deep research investigation. Indeed, the semantic exploitation of the DocW is not yet mature despite it representing a main concern for decision-makers. This paper aims to enhancing the multidimensional model called Diamond Document Warehouse Model with semantics aspects; in particular, it suggests semantic OLAP (on-line analytical processing) operators for querying the DocW.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Diamond Document Warehouse Model\",\"authors\":\"M. Azabou, Ameen Banjar, J. Feki\",\"doi\":\"10.4018/ijdwm.2020100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The data warehouse community has paid particular attention to the document warehouse (DocW) paradigm during the last two decades. However, some important issues related to the semantics are still pending and therefore need a deep research investigation. Indeed, the semantic exploitation of the DocW is not yet mature despite it representing a main concern for decision-makers. This paper aims to enhancing the multidimensional model called Diamond Document Warehouse Model with semantics aspects; in particular, it suggests semantic OLAP (on-line analytical processing) operators for querying the DocW.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.2020100101\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.2020100101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,数据仓库社区特别关注文档仓库(DocW)范式。然而,一些与语义相关的重要问题仍然悬而未决,因此需要深入研究。实际上,DocW的语义开发还不成熟,尽管它代表了决策者的主要关注点。本文旨在从语义方面对多维模型——钻石文档仓库模型进行增强;特别是,它建议用于查询DocW的语义OLAP(在线分析处理)操作符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Diamond Document Warehouse Model
The data warehouse community has paid particular attention to the document warehouse (DocW) paradigm during the last two decades. However, some important issues related to the semantics are still pending and therefore need a deep research investigation. Indeed, the semantic exploitation of the DocW is not yet mature despite it representing a main concern for decision-makers. This paper aims to enhancing the multidimensional model called Diamond Document Warehouse Model with semantics aspects; in particular, it suggests semantic OLAP (on-line analytical processing) operators for querying the DocW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1