查询有序图的结构递归

S. Hidaka, Kazuyuki Asada, Zhenjiang Hu, H. Kato, Keisuke Nakano
{"title":"查询有序图的结构递归","authors":"S. Hidaka, Kazuyuki Asada, Zhenjiang Hu, H. Kato, Keisuke Nakano","doi":"10.1145/2500365.2500608","DOIUrl":null,"url":null,"abstract":"Structural recursion, in the form of, for example, folds on lists and catamorphisms on algebraic data structures including trees, plays an important role in functional programming, by providing a systematic way for constructing and manipulating functional programs. It is, however, a challenge to define structural recursions for graph data structures, the most ubiquitous sort of data in computing. This is because unlike lists and trees, graphs are essentially not inductive and cannot be formalized as an initial algebra in general. In this paper, we borrow from the database community the idea of structural recursion on how to restrict recursions on infinite unordered regular trees so that they preserve the finiteness property and become terminating, which are desirable properties for query languages. We propose a new graph transformation language called lambdaFG for transforming and querying ordered graphs, based on the well-defined bisimulation relation on ordered graphs with special epsilon-edges. The language lambdaFG is a higher order graph transformation language that extends the simply typed lambda calculus with graph constructors and more powerful structural recursions, which is extended for transformations on the sibling dimension. It not only gives a general framework for manipulating graphs and reasoning about them, but also provides a solution to the open problem of how to define a structural recursion on ordered graphs, with the help of the bisimilarity for ordered graphs with epsilon-edges.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"967 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Structural recursion for querying ordered graphs\",\"authors\":\"S. Hidaka, Kazuyuki Asada, Zhenjiang Hu, H. Kato, Keisuke Nakano\",\"doi\":\"10.1145/2500365.2500608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural recursion, in the form of, for example, folds on lists and catamorphisms on algebraic data structures including trees, plays an important role in functional programming, by providing a systematic way for constructing and manipulating functional programs. It is, however, a challenge to define structural recursions for graph data structures, the most ubiquitous sort of data in computing. This is because unlike lists and trees, graphs are essentially not inductive and cannot be formalized as an initial algebra in general. In this paper, we borrow from the database community the idea of structural recursion on how to restrict recursions on infinite unordered regular trees so that they preserve the finiteness property and become terminating, which are desirable properties for query languages. We propose a new graph transformation language called lambdaFG for transforming and querying ordered graphs, based on the well-defined bisimulation relation on ordered graphs with special epsilon-edges. The language lambdaFG is a higher order graph transformation language that extends the simply typed lambda calculus with graph constructors and more powerful structural recursions, which is extended for transformations on the sibling dimension. It not only gives a general framework for manipulating graphs and reasoning about them, but also provides a solution to the open problem of how to define a structural recursion on ordered graphs, with the help of the bisimilarity for ordered graphs with epsilon-edges.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"967 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2500365.2500608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

结构递归,例如表上的折叠和代数数据结构(包括树)上的变形,在函数式编程中起着重要的作用,它为构造和操作函数式程序提供了一种系统的方法。然而,为图数据结构定义结构递归是一个挑战,图数据结构是计算中最普遍的数据类型。这是因为与列表和树不同,图本质上不是归纳的,一般不能形式化为初始代数。本文借鉴数据库界的结构递归思想,研究了如何在无限无序正则树上限制递归,使其保持有限性和终止性,这是查询语言所需要的特性。基于具有特殊ε边的有序图上定义好的双模拟关系,提出了一种新的图变换语言lambdaFG,用于有序图的变换和查询。lambdaFG语言是一种高阶图转换语言,它使用图构造函数和更强大的结构递归扩展了简单类型的lambda演算,并扩展为兄弟维度上的转换。它不仅给出了一个操作图和推理图的一般框架,而且还提供了一个解决如何在有序图上定义结构递归的开放问题的方法,该方法利用了带ε边的有序图的双相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural recursion for querying ordered graphs
Structural recursion, in the form of, for example, folds on lists and catamorphisms on algebraic data structures including trees, plays an important role in functional programming, by providing a systematic way for constructing and manipulating functional programs. It is, however, a challenge to define structural recursions for graph data structures, the most ubiquitous sort of data in computing. This is because unlike lists and trees, graphs are essentially not inductive and cannot be formalized as an initial algebra in general. In this paper, we borrow from the database community the idea of structural recursion on how to restrict recursions on infinite unordered regular trees so that they preserve the finiteness property and become terminating, which are desirable properties for query languages. We propose a new graph transformation language called lambdaFG for transforming and querying ordered graphs, based on the well-defined bisimulation relation on ordered graphs with special epsilon-edges. The language lambdaFG is a higher order graph transformation language that extends the simply typed lambda calculus with graph constructors and more powerful structural recursions, which is extended for transformations on the sibling dimension. It not only gives a general framework for manipulating graphs and reasoning about them, but also provides a solution to the open problem of how to define a structural recursion on ordered graphs, with the help of the bisimilarity for ordered graphs with epsilon-edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1ML - core and modules united (F-ing first-class modules) Functional programming for dynamic and large data with self-adjusting computation A theory of gradual effect systems Building embedded systems with embedded DSLs Homotopical patch theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1