基于连续时间隐马尔可夫模型的软件老化建模统计框架

H. Okamura, Junjun Zheng, T. Dohi
{"title":"基于连续时间隐马尔可夫模型的软件老化建模统计框架","authors":"H. Okamura, Junjun Zheng, T. Dohi","doi":"10.1109/SRDS.2017.24","DOIUrl":null,"url":null,"abstract":"This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"57 1","pages":"114-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Statistical Framework on Software Aging Modeling with Continuous-Time Hidden Markov Model\",\"authors\":\"H. Okamura, Junjun Zheng, T. Dohi\",\"doi\":\"10.1109/SRDS.2017.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.\",\"PeriodicalId\":6475,\"journal\":{\"name\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"57 1\",\"pages\":\"114-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2017.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文考虑用统计方法从系统属性的时间序列数据中对软件退化过程进行建模。首先建立了连续时间马尔可夫链(CTMC)模型来表示系统的退化程度。将CTMC与系统属性分布相结合,提出连续时间隐马尔可夫模型(CT-HMM)作为表示系统退化程度的基本模型。为了估计模型参数,我们开发了CT-HMM的EM算法。该建模的优点是将估算模型直接应用于现有的基于ctmc的软件老化与年轻化模型。在数值实验中,我们通过模拟数据证明了我们的方法的性能,并演示了在MySQL数据库系统中使用实验数据估计软件退化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Statistical Framework on Software Aging Modeling with Continuous-Time Hidden Markov Model
This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PULP: Achieving Privacy and Utility Trade-Off in User Mobility Data On Availability for Blockchain-Based Systems Runtime Measurement Architecture for Bytecode Integrity in JVM-Based Cloud Performance Modeling of PBFT Consensus Process for Permissioned Blockchain Network (Hyperledger Fabric) CausalSpartan: Causal Consistency for Distributed Data Stores Using Hybrid Logical Clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1