应变速率对热变形2205双相不锈钢动态再结晶影响的测定

A. D. Baruwa, E. Gonya, M. Makhatha
{"title":"应变速率对热变形2205双相不锈钢动态再结晶影响的测定","authors":"A. D. Baruwa, E. Gonya, M. Makhatha","doi":"10.1051/matecconf/202337402001","DOIUrl":null,"url":null,"abstract":"2205 duplex stainless steel suffers poor hot workability, especially whe1981hot-deformed. This investigation aims to determine the strain rate’s effect on the material’s dynamic recrystallization after heat treatment. Secondly, to ascertain the critical strain at which the recrystallization occurs. The as-rolled material was subjected to heat treatment at 1340 °C for some time. After heat treatment, the yielded equiaxed austenite morphology was used for this investigation. Gleeble 1500™ thermo-mechanical was used as a simulant in uniaxial compression mode. The deformation temperature was set at 850 °C, with maximum strain at 0.8 and carried out at 0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1, 5 s-1 strain rates. The microstructure of before and after heat-treatment was evaluated using a light microscope, while the critical factors (stress and strain) were determined through the stress-strain curve. It was observed that the lowest strain rate generated the maximum critical stress and critical strain at 191.99 MPa and 0.08283, respectively. However, at the highest strain rate, the maximum critical stress and critical strain experienced by the material were at 336.32 MPa and 0.17577. Overall, it was established that the applied stain rate influenced the critical strain and stress of the material. It can be concluded that dynamic recrystallization can occur at any strain rate, but the applied stress determines the extent of the phenomenon.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the impact of strain rate on dynamic recrystallization of hot-deformed 2205 duplex stainless steel\",\"authors\":\"A. D. Baruwa, E. Gonya, M. Makhatha\",\"doi\":\"10.1051/matecconf/202337402001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2205 duplex stainless steel suffers poor hot workability, especially whe1981hot-deformed. This investigation aims to determine the strain rate’s effect on the material’s dynamic recrystallization after heat treatment. Secondly, to ascertain the critical strain at which the recrystallization occurs. The as-rolled material was subjected to heat treatment at 1340 °C for some time. After heat treatment, the yielded equiaxed austenite morphology was used for this investigation. Gleeble 1500™ thermo-mechanical was used as a simulant in uniaxial compression mode. The deformation temperature was set at 850 °C, with maximum strain at 0.8 and carried out at 0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1, 5 s-1 strain rates. The microstructure of before and after heat-treatment was evaluated using a light microscope, while the critical factors (stress and strain) were determined through the stress-strain curve. It was observed that the lowest strain rate generated the maximum critical stress and critical strain at 191.99 MPa and 0.08283, respectively. However, at the highest strain rate, the maximum critical stress and critical strain experienced by the material were at 336.32 MPa and 0.17577. Overall, it was established that the applied stain rate influenced the critical strain and stress of the material. It can be concluded that dynamic recrystallization can occur at any strain rate, but the applied stress determines the extent of the phenomenon.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337402001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337402001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2205双相不锈钢的热加工性很差,特别是热变形时。本研究旨在确定应变速率对热处理后材料动态再结晶的影响。其次,确定发生再结晶的临界应变。轧制后的材料在1340℃下进行一段时间的热处理。热处理后,得到等轴奥氏体。在单轴压缩模式下,采用Gleeble 1500™热机械模拟。变形温度为850℃,最大应变为0.8,变形速率分别为0.001 s- 1,0.01 s- 1,0.1 s- 1,1 s- 1,5 s-1。利用光镜对热处理前后的微观组织进行评价,并通过应力-应变曲线确定关键因素(应力和应变)。结果表明,最低应变速率产生的最大临界应力和临界应变分别为191.99 MPa和0.08283 MPa。而在应变速率最高时,材料经历的最大临界应力和临界应变分别为336.32 MPa和0.17577。总的来说,确定了施加染色率影响材料的临界应变和应力。可以得出结论,动态再结晶可以在任何应变速率下发生,但施加的应力决定了这种现象的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the impact of strain rate on dynamic recrystallization of hot-deformed 2205 duplex stainless steel
2205 duplex stainless steel suffers poor hot workability, especially whe1981hot-deformed. This investigation aims to determine the strain rate’s effect on the material’s dynamic recrystallization after heat treatment. Secondly, to ascertain the critical strain at which the recrystallization occurs. The as-rolled material was subjected to heat treatment at 1340 °C for some time. After heat treatment, the yielded equiaxed austenite morphology was used for this investigation. Gleeble 1500™ thermo-mechanical was used as a simulant in uniaxial compression mode. The deformation temperature was set at 850 °C, with maximum strain at 0.8 and carried out at 0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1, 5 s-1 strain rates. The microstructure of before and after heat-treatment was evaluated using a light microscope, while the critical factors (stress and strain) were determined through the stress-strain curve. It was observed that the lowest strain rate generated the maximum critical stress and critical strain at 191.99 MPa and 0.08283, respectively. However, at the highest strain rate, the maximum critical stress and critical strain experienced by the material were at 336.32 MPa and 0.17577. Overall, it was established that the applied stain rate influenced the critical strain and stress of the material. It can be concluded that dynamic recrystallization can occur at any strain rate, but the applied stress determines the extent of the phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
期刊最新文献
Classification of intracranial hemorrhage (CT) images using CNN-LSTM method and image-based GLCM features Study of pathways to reduce the energy consumption of the CO2 capture process by absorption-regeneration Optimizations of the internal structure of the reel of a double rope winder The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine Physicochemical studies of composite coatings during accelerated tests for atmospheric corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1