{"title":"基于IMEP的可逆数字电路的进化设计——偶宇称问题","authors":"F. Hadjam, C. Moraga","doi":"10.1109/CEC.2010.5586252","DOIUrl":null,"url":null,"abstract":"Reversible logic is an emerging research area and has attracted significant attention in recent years. Developing systematic logic synthesis algorithms for reversible logic is still an area of research. Unlike other areas of application, there are relatively few publications on applications of genetic programming — (evolutionary algorithms in general) — to reversible logic synthesis. In this paper, we are introducing a new method; a variant of IMEP. The case of digital circuits for the even-parity problem is investigated. The type of gate used to evolve such a problem is the Fredkin gate.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"54 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evolutionary design of reversible digital circuits using IMEP the case of the even parity problem\",\"authors\":\"F. Hadjam, C. Moraga\",\"doi\":\"10.1109/CEC.2010.5586252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible logic is an emerging research area and has attracted significant attention in recent years. Developing systematic logic synthesis algorithms for reversible logic is still an area of research. Unlike other areas of application, there are relatively few publications on applications of genetic programming — (evolutionary algorithms in general) — to reversible logic synthesis. In this paper, we are introducing a new method; a variant of IMEP. The case of digital circuits for the even-parity problem is investigated. The type of gate used to evolve such a problem is the Fredkin gate.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"54 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary design of reversible digital circuits using IMEP the case of the even parity problem
Reversible logic is an emerging research area and has attracted significant attention in recent years. Developing systematic logic synthesis algorithms for reversible logic is still an area of research. Unlike other areas of application, there are relatively few publications on applications of genetic programming — (evolutionary algorithms in general) — to reversible logic synthesis. In this paper, we are introducing a new method; a variant of IMEP. The case of digital circuits for the even-parity problem is investigated. The type of gate used to evolve such a problem is the Fredkin gate.