无疤痕Cas9辅助重组(no-SCAR)大肠杆菌,一个易于使用的基因组编辑系统

Q2 Biochemistry, Genetics and Molecular Biology Current Protocols in Molecular Biology Pub Date : 2018-02-13 DOI:10.1002/cpmb.29
Christopher R. Reisch, Kristala L.J. Prather
{"title":"无疤痕Cas9辅助重组(no-SCAR)大肠杆菌,一个易于使用的基因组编辑系统","authors":"Christopher R. Reisch,&nbsp;Kristala L.J. Prather","doi":"10.1002/cpmb.29","DOIUrl":null,"url":null,"abstract":"<p>The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a “guide” RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, <i>E. coli</i> lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting <i>E. coli</i> chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in <i>E. coli</i>, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10734,"journal":{"name":"Current Protocols in Molecular Biology","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmb.29","citationCount":"36","resultStr":"{\"title\":\"Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing\",\"authors\":\"Christopher R. Reisch,&nbsp;Kristala L.J. Prather\",\"doi\":\"10.1002/cpmb.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a “guide” RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, <i>E. coli</i> lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting <i>E. coli</i> chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in <i>E. coli</i>, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10734,\"journal\":{\"name\":\"Current Protocols in Molecular Biology\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmb.29\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 36

摘要

利用位点特异性DNA内切酶系统CRISPR/Cas9的基因组编辑系统的发现和发展,从根本上改变了许多生物基因组编辑的便利性和速度。在真核生物中,CRISPR/Cas9系统利用“引导”RNA使Cas9核酸酶在特定基因组位点上产生双链断裂,由非同源末端连接(NHEJ)修复酶修复,通常在此过程中产生随机突变。目标基因组的特定改变也可以通过在体内提供具有所需突变的DNA模板来产生,该突变通过同源定向修复合并。然而,大肠杆菌缺乏强大的双链断裂修复系统。因此,与真核生物不同,用Cas9靶向大肠杆菌染色体DNA会导致细胞死亡。然而,cas9介导的细菌杀伤可以用于选择混合群体中具有特定基因型的细胞。结合已经很好地描述的大肠杆菌重组的λ-Red系统,我们创建了一个高效的无标记和无疤痕基因组编辑系统。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing

The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a “guide” RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, E. coli lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting E. coli chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in E. coli, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Molecular Biology
Current Protocols in Molecular Biology Biochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules Reconstitution and Purification of Nucleosomes with Recombinant Histones and Purified DNA Measuring Protein Synthesis in Cultured Cells and Mouse Tissues Using the Non-radioactive SUnSET Assay Base Editing in Human Cells to Produce Single-Nucleotide-Variant Clonal Cell Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1