Jipeng Wang, Yan Wang, Fan Wu, Peihong Wu, Juncheng Jiang
{"title":"典型地铁立交站多源火灾应急通风方式研究","authors":"Jipeng Wang, Yan Wang, Fan Wu, Peihong Wu, Juncheng Jiang","doi":"10.1080/14733315.2020.1817284","DOIUrl":null,"url":null,"abstract":"Abstract The fire protection design in a large-scale interchange station is always a great challenge. In this paper, a series of numerical simulations were conducted to investigate the performance of emergency ventilation modes for three potential multisource fire scenarios. The parameters that influence passengers’ evacuation were analyzed. The results demonstrated that unreasonable co-operation ventilation mode enhances the smoke propagation in other lines. The interaction of ventilation modes in different lines must be considered in practice. When the multisource fires occur on the same floor of both lines, the most effective scheme is to adopt the same ventilation mode in each line. When the multisource fires occur on different floors of both lines, it is difficult to maintain a balance of the exhaust capability in each line. The optimal ventilation modes were finally proposed for three fire scenarios based on the smoke discharge capability in the whole station.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"42 1","pages":"157 - 176"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on emergency ventilation mode for multisource fires in a typical interchange subway station\",\"authors\":\"Jipeng Wang, Yan Wang, Fan Wu, Peihong Wu, Juncheng Jiang\",\"doi\":\"10.1080/14733315.2020.1817284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The fire protection design in a large-scale interchange station is always a great challenge. In this paper, a series of numerical simulations were conducted to investigate the performance of emergency ventilation modes for three potential multisource fire scenarios. The parameters that influence passengers’ evacuation were analyzed. The results demonstrated that unreasonable co-operation ventilation mode enhances the smoke propagation in other lines. The interaction of ventilation modes in different lines must be considered in practice. When the multisource fires occur on the same floor of both lines, the most effective scheme is to adopt the same ventilation mode in each line. When the multisource fires occur on different floors of both lines, it is difficult to maintain a balance of the exhaust capability in each line. The optimal ventilation modes were finally proposed for three fire scenarios based on the smoke discharge capability in the whole station.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"42 1\",\"pages\":\"157 - 176\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2020.1817284\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2020.1817284","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Study on emergency ventilation mode for multisource fires in a typical interchange subway station
Abstract The fire protection design in a large-scale interchange station is always a great challenge. In this paper, a series of numerical simulations were conducted to investigate the performance of emergency ventilation modes for three potential multisource fire scenarios. The parameters that influence passengers’ evacuation were analyzed. The results demonstrated that unreasonable co-operation ventilation mode enhances the smoke propagation in other lines. The interaction of ventilation modes in different lines must be considered in practice. When the multisource fires occur on the same floor of both lines, the most effective scheme is to adopt the same ventilation mode in each line. When the multisource fires occur on different floors of both lines, it is difficult to maintain a balance of the exhaust capability in each line. The optimal ventilation modes were finally proposed for three fire scenarios based on the smoke discharge capability in the whole station.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).