E. Rothwell, J. L. Frasch, Sean M. Ellison, P. Chahal, R. Ouedraogo
{"title":"表征工程材料电磁特性的Nicolson-Ross-Weir方法分析","authors":"E. Rothwell, J. L. Frasch, Sean M. Ellison, P. Chahal, R. Ouedraogo","doi":"10.2528/PIER16071706","DOIUrl":null,"url":null,"abstract":"A method for predicting the behavior of the permittivity and permeability of an engineered material by examining the measured S-parameters of a material sample is devised, assuming that the sample is lossless and symmetric. The S-parameter conditions under which the material parameters extracted using the Nicolson-Ross-Weir method may be associated with a lossless homogeneous material are described. Also, the relationship between the signs of the real and imaginary parts of the permittivity and permeability are determined, both when the extracted material parameters are real and when they are complex. In particular, the conditions under which metamaterials exhibit double-negative properties may be predicted from the S-parameters of a metamaterial sample. The relationships between material characteristics and the S-parameters should prove useful when synthesizing materials to have certain desired properties. Examples, both from experiment and simulation, demonstrate that the relationships may be used to understand the behavior of several different categories of engineered materials, even when the materials have appreciable loss.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"123 1","pages":"31-47"},"PeriodicalIF":6.7000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials\",\"authors\":\"E. Rothwell, J. L. Frasch, Sean M. Ellison, P. Chahal, R. Ouedraogo\",\"doi\":\"10.2528/PIER16071706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for predicting the behavior of the permittivity and permeability of an engineered material by examining the measured S-parameters of a material sample is devised, assuming that the sample is lossless and symmetric. The S-parameter conditions under which the material parameters extracted using the Nicolson-Ross-Weir method may be associated with a lossless homogeneous material are described. Also, the relationship between the signs of the real and imaginary parts of the permittivity and permeability are determined, both when the extracted material parameters are real and when they are complex. In particular, the conditions under which metamaterials exhibit double-negative properties may be predicted from the S-parameters of a metamaterial sample. The relationships between material characteristics and the S-parameters should prove useful when synthesizing materials to have certain desired properties. Examples, both from experiment and simulation, demonstrate that the relationships may be used to understand the behavior of several different categories of engineered materials, even when the materials have appreciable loss.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"123 1\",\"pages\":\"31-47\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER16071706\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER16071706","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials
A method for predicting the behavior of the permittivity and permeability of an engineered material by examining the measured S-parameters of a material sample is devised, assuming that the sample is lossless and symmetric. The S-parameter conditions under which the material parameters extracted using the Nicolson-Ross-Weir method may be associated with a lossless homogeneous material are described. Also, the relationship between the signs of the real and imaginary parts of the permittivity and permeability are determined, both when the extracted material parameters are real and when they are complex. In particular, the conditions under which metamaterials exhibit double-negative properties may be predicted from the S-parameters of a metamaterial sample. The relationships between material characteristics and the S-parameters should prove useful when synthesizing materials to have certain desired properties. Examples, both from experiment and simulation, demonstrate that the relationships may be used to understand the behavior of several different categories of engineered materials, even when the materials have appreciable loss.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.