{"title":"下一代网络中基于knn的自适应网络选择算法","authors":"Fayssal Bendaoud","doi":"10.3233/jhs-210669","DOIUrl":null,"url":null,"abstract":"Nowadays, mobile users are equipped with multi-mode terminals allowing them to connect to different radio access technologies like WLAN, 3G (HSPA and HSPA+), and Long term evolution (LTE) each at a time. In this context, the challenge of the next-generation networks is to achieve the Always Best Connected (ABC) concept. To this end, solving the problem of selecting the most suitable radio access technology (RAT) from the list of available RAT is at the heart of the next-generation systems. The decision process is called access network selection and it depends on several parameters, such as quality of service, mobility, cost of each RAT, energy consumption, battery life, etc. Several methods and approaches have been proposed to solve the network selection problem with the fundamental objective which is to offer the best QoS to the users and to maximize the usability of the networks without affecting the users’ experience. In this paper, we propose an adaptive KNN (K nearest neighbour) based algorithm to solve the network selection problem, the proposed solution has a low computation complexity with a high level of veracity is compared with the well-known MADM methods.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"38 1","pages":"305-318"},"PeriodicalIF":0.7000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Knn-based algorithm for network selection in next-generation networks\",\"authors\":\"Fayssal Bendaoud\",\"doi\":\"10.3233/jhs-210669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, mobile users are equipped with multi-mode terminals allowing them to connect to different radio access technologies like WLAN, 3G (HSPA and HSPA+), and Long term evolution (LTE) each at a time. In this context, the challenge of the next-generation networks is to achieve the Always Best Connected (ABC) concept. To this end, solving the problem of selecting the most suitable radio access technology (RAT) from the list of available RAT is at the heart of the next-generation systems. The decision process is called access network selection and it depends on several parameters, such as quality of service, mobility, cost of each RAT, energy consumption, battery life, etc. Several methods and approaches have been proposed to solve the network selection problem with the fundamental objective which is to offer the best QoS to the users and to maximize the usability of the networks without affecting the users’ experience. In this paper, we propose an adaptive KNN (K nearest neighbour) based algorithm to solve the network selection problem, the proposed solution has a low computation complexity with a high level of veracity is compared with the well-known MADM methods.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"38 1\",\"pages\":\"305-318\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-210669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-210669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adaptive Knn-based algorithm for network selection in next-generation networks
Nowadays, mobile users are equipped with multi-mode terminals allowing them to connect to different radio access technologies like WLAN, 3G (HSPA and HSPA+), and Long term evolution (LTE) each at a time. In this context, the challenge of the next-generation networks is to achieve the Always Best Connected (ABC) concept. To this end, solving the problem of selecting the most suitable radio access technology (RAT) from the list of available RAT is at the heart of the next-generation systems. The decision process is called access network selection and it depends on several parameters, such as quality of service, mobility, cost of each RAT, energy consumption, battery life, etc. Several methods and approaches have been proposed to solve the network selection problem with the fundamental objective which is to offer the best QoS to the users and to maximize the usability of the networks without affecting the users’ experience. In this paper, we propose an adaptive KNN (K nearest neighbour) based algorithm to solve the network selection problem, the proposed solution has a low computation complexity with a high level of veracity is compared with the well-known MADM methods.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.