任意逻辑仿真模型中的强化学习:使用路径思维的指导示例

Mohammed Farhan, Brett Göhre, Edward Junprung
{"title":"任意逻辑仿真模型中的强化学习:使用路径思维的指导示例","authors":"Mohammed Farhan, Brett Göhre, Edward Junprung","doi":"10.1109/WSC48552.2020.9383916","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning has recently gained a lot of exposure in the simulation industry. In this paper, we demonstrate the use of reinforcement learning in AnyLogic software models using Pathmind. A coffee shop simulation is built to train a barista to make correct operational decisions and improve efficiency that directly affects customer service time. The trained policy outperforms rule-based functions in terms of customer service time and throughput.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"40 1","pages":"3212-3223"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reinforcement Learning in Anylogic Simulation Models: A Guiding Example Using Pathmind\",\"authors\":\"Mohammed Farhan, Brett Göhre, Edward Junprung\",\"doi\":\"10.1109/WSC48552.2020.9383916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement Learning has recently gained a lot of exposure in the simulation industry. In this paper, we demonstrate the use of reinforcement learning in AnyLogic software models using Pathmind. A coffee shop simulation is built to train a barista to make correct operational decisions and improve efficiency that directly affects customer service time. The trained policy outperforms rule-based functions in terms of customer service time and throughput.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"40 1\",\"pages\":\"3212-3223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9383916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近,强化学习在仿真行业中得到了很多关注。在本文中,我们演示了使用Pathmind在AnyLogic软件模型中使用强化学习。建立了一个咖啡馆模拟,以培训咖啡师做出正确的运营决策,提高直接影响客户服务时间的效率。经过训练的策略在客户服务时间和吞吐量方面优于基于规则的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning in Anylogic Simulation Models: A Guiding Example Using Pathmind
Reinforcement Learning has recently gained a lot of exposure in the simulation industry. In this paper, we demonstrate the use of reinforcement learning in AnyLogic software models using Pathmind. A coffee shop simulation is built to train a barista to make correct operational decisions and improve efficiency that directly affects customer service time. The trained policy outperforms rule-based functions in terms of customer service time and throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Précis: The Emotional Mind: The Affective Roots of Culture and Cognition Emotional Correctness Robot Collaboration Intelligence with AI Evaluation and Selection of Hospital Layout Based on an Integrated Simulation Method A Simheuristic Approach for Robust Scheduling of Airport Turnaround Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1