Banach空间中求解非lipschitz拟单调变分不等式的强收敛惯性Tseng法

IF 2.5 2区 数学 Q1 MATHEMATICS Journal of Nonlinear and Variational Analysis Pub Date : 2023-01-01 DOI:10.23952/jnva.7.2023.1.09
T. Mewomo, T. O. Alakoya, J. Yao, L. Akinyemi
{"title":"Banach空间中求解非lipschitz拟单调变分不等式的强收敛惯性Tseng法","authors":"T. Mewomo, T. O. Alakoya, J. Yao, L. Akinyemi","doi":"10.23952/jnva.7.2023.1.09","DOIUrl":null,"url":null,"abstract":". The class of quasimonotone variational inequalities is more general and applicable than the class of pseudomonotone and monotone variational inequalities. However, few results can be found in the literature on quasimonotone variational inequalities and currently results are mostly on weak convergent methods in the framework of Hilbert spaces. In this paper, we study the class of non-Lipschitz quasimonotone variational inequalities and the class of non-Lipschitz variational inequalities without monotonicity in the framework of Banach spaces. We propose a new inertial Tseng’s extragradient method and obtain some strong convergence results for the proposed algorithm under some mild conditions on the control parameters. While the cost operator is non-Lipschitz, our proposed method does not require any linesearch procedure but employs a more efficient and simple self-adaptive step sizes with known parameters. Finally, we present several numerical experiments to demonstrate the implementability of our proposed method.","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":"49 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong convergent inertial Tseng’s extragradient method for solving non-Lipschitz quasimonotone variational inequalities in Banach spaces\",\"authors\":\"T. Mewomo, T. O. Alakoya, J. Yao, L. Akinyemi\",\"doi\":\"10.23952/jnva.7.2023.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The class of quasimonotone variational inequalities is more general and applicable than the class of pseudomonotone and monotone variational inequalities. However, few results can be found in the literature on quasimonotone variational inequalities and currently results are mostly on weak convergent methods in the framework of Hilbert spaces. In this paper, we study the class of non-Lipschitz quasimonotone variational inequalities and the class of non-Lipschitz variational inequalities without monotonicity in the framework of Banach spaces. We propose a new inertial Tseng’s extragradient method and obtain some strong convergence results for the proposed algorithm under some mild conditions on the control parameters. While the cost operator is non-Lipschitz, our proposed method does not require any linesearch procedure but employs a more efficient and simple self-adaptive step sizes with known parameters. Finally, we present several numerical experiments to demonstrate the implementability of our proposed method.\",\"PeriodicalId\":48488,\"journal\":{\"name\":\"Journal of Nonlinear and Variational Analysis\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear and Variational Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.7.2023.1.09\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.7.2023.1.09","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 拟单调变分不等式类比伪单调和单调变分不等式类更具有普遍性和适用性。然而,文献中关于拟单调变分不等式的结果很少,目前的结果大多是关于Hilbert空间框架下的弱收敛方法。本文研究了Banach空间框架下的一类非lipschitz拟单调变分不等式和一类非lipschitz无单调变分不等式。提出了一种新的惯性Tseng超聚方法,并在控制参数较温和的条件下得到了该算法的强收敛性。虽然代价算子是非lipschitz算子,但我们提出的方法不需要任何直线研究过程,而是采用了已知参数下更有效和简单的自适应步长。最后,我们给出了几个数值实验来证明我们所提出的方法的可实现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strong convergent inertial Tseng’s extragradient method for solving non-Lipschitz quasimonotone variational inequalities in Banach spaces
. The class of quasimonotone variational inequalities is more general and applicable than the class of pseudomonotone and monotone variational inequalities. However, few results can be found in the literature on quasimonotone variational inequalities and currently results are mostly on weak convergent methods in the framework of Hilbert spaces. In this paper, we study the class of non-Lipschitz quasimonotone variational inequalities and the class of non-Lipschitz variational inequalities without monotonicity in the framework of Banach spaces. We propose a new inertial Tseng’s extragradient method and obtain some strong convergence results for the proposed algorithm under some mild conditions on the control parameters. While the cost operator is non-Lipschitz, our proposed method does not require any linesearch procedure but employs a more efficient and simple self-adaptive step sizes with known parameters. Finally, we present several numerical experiments to demonstrate the implementability of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
3.40%
发文量
10
期刊最新文献
Double inertial parameters forward-backward splitting method: Applications to compressed sensing, image processing, and SCAD penalty problems Drop-DIP: A single-image denoising method based on deep image prior Absolute value equations with data uncertainty in the $l_1$ and $l_\infty$ norm balls Sparse broadband beamformer design via proximal optimization Techniques Editorial: Special issue on fast algorithms and theories for applications in signal and image processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1