H. Tsai, Chia-Shin Wei, Ya-Chu Hsieh, I-Miao Chen, Pin-Yu Yeh, Darren Shih, Chiun-Li Chin
{"title":"基于多架构深度学习算法的乳房x光片钙化簇和病变分析","authors":"H. Tsai, Chia-Shin Wei, Ya-Chu Hsieh, I-Miao Chen, Pin-Yu Yeh, Darren Shih, Chiun-Li Chin","doi":"10.4015/s1016237222500223","DOIUrl":null,"url":null,"abstract":"Today, radiologists observe a mammogram to determine whether breast tissue is normal. However, calcifications on the mammogram are so small that sometimes radiologists cannot locate them without a magnified observation to make a judgment. If clusters formed by malignant calcifications are found, the patient should undergo a needle localization surgical biopsy to determine whether the calcification cluster is benign or malignant. However, a needle localization surgical biopsy is an invasive examination. This invasive examination leaves scars, causes pain, and makes the patient feel uncomfortable and unwilling to receive an immediate biopsy, resulting in a delay in treatment time. The researcher cooperated with a medical radiologist to analyze calcification clusters and lesions, employing a mammogram using a multi-architecture deep learning algorithm to solve these problems. The features of the location of the cluster and its benign or malignant status are collected from the needle localization surgical biopsy images and medical order and are used as the target training data in this study. This study adopts the steps of a radiologist examination. First, VGG16 is used to locate calcification clusters on the mammogram, and then the Mask R-CNN model is used to find micro-calcifications in the cluster to remove background interference. Finally, an Inception V3 model is used to analyze whether the calcification cluster is benign or malignant. The prediction precision rates of VGG16, Mask R-CNN, and Inception V3 in this study are 93.63%, 99.76%, and 88.89%, respectively, proving that they can effectively assist radiologists and help patients avoid undergoing a needle localization surgical biopsy.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"127 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CALCIFICATION CLUSTERS AND LESIONS ANALYSIS IN MAMMOGRAM USING MULTI-ARCHITECTURE DEEP LEARNING ALGORITHMS\",\"authors\":\"H. Tsai, Chia-Shin Wei, Ya-Chu Hsieh, I-Miao Chen, Pin-Yu Yeh, Darren Shih, Chiun-Li Chin\",\"doi\":\"10.4015/s1016237222500223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, radiologists observe a mammogram to determine whether breast tissue is normal. However, calcifications on the mammogram are so small that sometimes radiologists cannot locate them without a magnified observation to make a judgment. If clusters formed by malignant calcifications are found, the patient should undergo a needle localization surgical biopsy to determine whether the calcification cluster is benign or malignant. However, a needle localization surgical biopsy is an invasive examination. This invasive examination leaves scars, causes pain, and makes the patient feel uncomfortable and unwilling to receive an immediate biopsy, resulting in a delay in treatment time. The researcher cooperated with a medical radiologist to analyze calcification clusters and lesions, employing a mammogram using a multi-architecture deep learning algorithm to solve these problems. The features of the location of the cluster and its benign or malignant status are collected from the needle localization surgical biopsy images and medical order and are used as the target training data in this study. This study adopts the steps of a radiologist examination. First, VGG16 is used to locate calcification clusters on the mammogram, and then the Mask R-CNN model is used to find micro-calcifications in the cluster to remove background interference. Finally, an Inception V3 model is used to analyze whether the calcification cluster is benign or malignant. The prediction precision rates of VGG16, Mask R-CNN, and Inception V3 in this study are 93.63%, 99.76%, and 88.89%, respectively, proving that they can effectively assist radiologists and help patients avoid undergoing a needle localization surgical biopsy.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237222500223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
CALCIFICATION CLUSTERS AND LESIONS ANALYSIS IN MAMMOGRAM USING MULTI-ARCHITECTURE DEEP LEARNING ALGORITHMS
Today, radiologists observe a mammogram to determine whether breast tissue is normal. However, calcifications on the mammogram are so small that sometimes radiologists cannot locate them without a magnified observation to make a judgment. If clusters formed by malignant calcifications are found, the patient should undergo a needle localization surgical biopsy to determine whether the calcification cluster is benign or malignant. However, a needle localization surgical biopsy is an invasive examination. This invasive examination leaves scars, causes pain, and makes the patient feel uncomfortable and unwilling to receive an immediate biopsy, resulting in a delay in treatment time. The researcher cooperated with a medical radiologist to analyze calcification clusters and lesions, employing a mammogram using a multi-architecture deep learning algorithm to solve these problems. The features of the location of the cluster and its benign or malignant status are collected from the needle localization surgical biopsy images and medical order and are used as the target training data in this study. This study adopts the steps of a radiologist examination. First, VGG16 is used to locate calcification clusters on the mammogram, and then the Mask R-CNN model is used to find micro-calcifications in the cluster to remove background interference. Finally, an Inception V3 model is used to analyze whether the calcification cluster is benign or malignant. The prediction precision rates of VGG16, Mask R-CNN, and Inception V3 in this study are 93.63%, 99.76%, and 88.89%, respectively, proving that they can effectively assist radiologists and help patients avoid undergoing a needle localization surgical biopsy.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.