LED灯对假松离体生长的影响。,植物

IF 1.1 Q3 FORESTRY Journal of forest science Pub Date : 2022-08-26 DOI:10.17221/43/2022-jfs
Luis Alberto Marin Martinez, Lourdes Georgina Iglesias Andreu
{"title":"LED灯对假松离体生长的影响。,植物","authors":"Luis Alberto Marin Martinez, Lourdes Georgina Iglesias Andreu","doi":"10.17221/43/2022-jfs","DOIUrl":null,"url":null,"abstract":"Pinus pseudostrobus Lindl. is a species endemic to Mexico and is widely used in reforestation programmes, as it is highly adapted to poor, shallow, limestone soils and has high commercial importance. However, it is necessary to preserve this genetic material since it is in trouble due to high rates of deforestation, land use change, and forest fires, so it is necessary to have effective strategies to obtain good quality seedlings. Due to the properties of LED (light emitting diode) lamps used for illumination in the production of in vitro plants, the effects of two different lighting systems (LED and fluorescent) on an in vitro culture were analysed for the morphological characteristics of the growth and photosynthetic pigment content in P. pseudostrobus seedlings. The length and root size of the seedlings were affected by the type of illumination, where a red LED light was the most effective at 30 days of evaluation. However, a blue LED light was equally effective as a red LED light at 60 days of seedling development. On the other hand, the fluorescent light was better in terms of the number of needles in the first stage, but we found the blue LED light to be better in the second stage. For the photosynthetic pigment content, the highest values were found with the blue LED light. The results showed that the LED lighting system favours the growth, development, and photosynthetic pigment content of the species under study.","PeriodicalId":16011,"journal":{"name":"Journal of forest science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of LED lights on the in vitro growth of Pinus pseudostrobus Lindl., plants\",\"authors\":\"Luis Alberto Marin Martinez, Lourdes Georgina Iglesias Andreu\",\"doi\":\"10.17221/43/2022-jfs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pinus pseudostrobus Lindl. is a species endemic to Mexico and is widely used in reforestation programmes, as it is highly adapted to poor, shallow, limestone soils and has high commercial importance. However, it is necessary to preserve this genetic material since it is in trouble due to high rates of deforestation, land use change, and forest fires, so it is necessary to have effective strategies to obtain good quality seedlings. Due to the properties of LED (light emitting diode) lamps used for illumination in the production of in vitro plants, the effects of two different lighting systems (LED and fluorescent) on an in vitro culture were analysed for the morphological characteristics of the growth and photosynthetic pigment content in P. pseudostrobus seedlings. The length and root size of the seedlings were affected by the type of illumination, where a red LED light was the most effective at 30 days of evaluation. However, a blue LED light was equally effective as a red LED light at 60 days of seedling development. On the other hand, the fluorescent light was better in terms of the number of needles in the first stage, but we found the blue LED light to be better in the second stage. For the photosynthetic pigment content, the highest values were found with the blue LED light. The results showed that the LED lighting system favours the growth, development, and photosynthetic pigment content of the species under study.\",\"PeriodicalId\":16011,\"journal\":{\"name\":\"Journal of forest science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forest science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17221/43/2022-jfs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forest science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/43/2022-jfs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

摘要

伪松是墨西哥特有的物种,广泛用于重新造林方案,因为它高度适应贫瘠、浅层的石灰石土壤,具有很高的商业价值。然而,由于森林砍伐率高,土地利用变化和森林火灾,这种遗传物质处于困境,因此有必要保护这种遗传物质,因此有必要制定有效的策略来获得优质的幼苗。利用LED(发光二极管)灯在离体植物生产中的照明特性,分析了两种不同的照明系统(LED和荧光)对离体培养假石竹幼苗生长形态特征和光合色素含量的影响。幼苗的长度和根系大小受光照类型的影响,其中红色LED灯在30天的评估中最有效。然而,在幼苗发育的第60天,蓝色LED灯和红色LED灯同样有效。另一方面,荧光灯在第一阶段的针数上更好,但我们发现蓝色LED灯在第二阶段更好。光合色素含量以蓝色LED光处理最高。结果表明,LED照明系统有利于所研究物种的生长发育和光合色素含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of LED lights on the in vitro growth of Pinus pseudostrobus Lindl., plants
Pinus pseudostrobus Lindl. is a species endemic to Mexico and is widely used in reforestation programmes, as it is highly adapted to poor, shallow, limestone soils and has high commercial importance. However, it is necessary to preserve this genetic material since it is in trouble due to high rates of deforestation, land use change, and forest fires, so it is necessary to have effective strategies to obtain good quality seedlings. Due to the properties of LED (light emitting diode) lamps used for illumination in the production of in vitro plants, the effects of two different lighting systems (LED and fluorescent) on an in vitro culture were analysed for the morphological characteristics of the growth and photosynthetic pigment content in P. pseudostrobus seedlings. The length and root size of the seedlings were affected by the type of illumination, where a red LED light was the most effective at 30 days of evaluation. However, a blue LED light was equally effective as a red LED light at 60 days of seedling development. On the other hand, the fluorescent light was better in terms of the number of needles in the first stage, but we found the blue LED light to be better in the second stage. For the photosynthetic pigment content, the highest values were found with the blue LED light. The results showed that the LED lighting system favours the growth, development, and photosynthetic pigment content of the species under study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
48
审稿时长
6 weeks
期刊介绍: Original results of basic and applied research from all fields of forestry related to European forest ecosystems and their functions including those in the landscape and wood production chain are published in original scientific papers, short communications and review articles. Papers are published in English
期刊最新文献
Change in forest species composition and its projections into the economy of forest owners Over- and under-bark volume estimation of European larch timber produced by mechanised harvesting in Czechia Overgrazing strongly impedes the natural regeneration of the endemic Boswellia species on Socotra Island Innovations in the methodological approach to quantifying and evaluating the supported effects of forests for recreational and educational ecosystem services Calculation and operational assessment of tyre contact areas in the tractor-and-trailer unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1