基于流动力模态分解的湍流时空结构数据驱动识别

Q1 Mathematics GAMM Mitteilungen Pub Date : 2022-01-12 DOI:10.1002/gamm.202200003
Rui Yang, Xuan Zhang, Philipp Reiter, Detlef Lohse, Olga Shishkina, Moritz Linkmann
{"title":"基于流动力模态分解的湍流时空结构数据驱动识别","authors":"Rui Yang,&nbsp;Xuan Zhang,&nbsp;Philipp Reiter,&nbsp;Detlef Lohse,&nbsp;Olga Shishkina,&nbsp;Moritz Linkmann","doi":"10.1002/gamm.202200003","DOIUrl":null,"url":null,"abstract":"<p>Streaming Dynamic Mode Decomposition (sDMD) is a low-storage version of dynamic mode decomposition (DMD), a data-driven method to extract spatiotemporal flow patterns. Streaming DMD avoids storing the entire data sequence in memory by approximating the dynamic modes through incremental updates with new available data. In this paper, we use sDMD to identify and extract dominant spatiotemporal structures of different turbulent flows, requiring the analysis of large datasets. First, the efficiency and accuracy of sDMD are compared to the classical DMD, using a publicly available test dataset that consists of velocity field snapshots obtained by direct numerical simulation of a wake flow behind a cylinder. Streaming DMD not only reliably reproduces the most important dynamical features of the flow; our calculations also highlight its advantage in terms of the required computational resources. We subsequently use sDMD to analyse three different turbulent flows that all show some degree of large-scale coherence: rapidly rotating Rayleigh–Bénard convection, horizontal convection and the asymptotic suction boundary layer (ASBL). Structures of different frequencies and spatial extent can be clearly separated, and the prominent features of the dynamics are captured with just a few dynamic modes. In summary, we demonstrate that sDMD is a powerful tool for the identification of spatiotemporal structures in a wide range of turbulent flows.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200003","citationCount":"5","resultStr":"{\"title\":\"Data-driven identification of the spatiotemporal structure of turbulent flows by streaming dynamic mode decomposition\",\"authors\":\"Rui Yang,&nbsp;Xuan Zhang,&nbsp;Philipp Reiter,&nbsp;Detlef Lohse,&nbsp;Olga Shishkina,&nbsp;Moritz Linkmann\",\"doi\":\"10.1002/gamm.202200003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Streaming Dynamic Mode Decomposition (sDMD) is a low-storage version of dynamic mode decomposition (DMD), a data-driven method to extract spatiotemporal flow patterns. Streaming DMD avoids storing the entire data sequence in memory by approximating the dynamic modes through incremental updates with new available data. In this paper, we use sDMD to identify and extract dominant spatiotemporal structures of different turbulent flows, requiring the analysis of large datasets. First, the efficiency and accuracy of sDMD are compared to the classical DMD, using a publicly available test dataset that consists of velocity field snapshots obtained by direct numerical simulation of a wake flow behind a cylinder. Streaming DMD not only reliably reproduces the most important dynamical features of the flow; our calculations also highlight its advantage in terms of the required computational resources. We subsequently use sDMD to analyse three different turbulent flows that all show some degree of large-scale coherence: rapidly rotating Rayleigh–Bénard convection, horizontal convection and the asymptotic suction boundary layer (ASBL). Structures of different frequencies and spatial extent can be clearly separated, and the prominent features of the dynamics are captured with just a few dynamic modes. In summary, we demonstrate that sDMD is a powerful tool for the identification of spatiotemporal structures in a wide range of turbulent flows.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

流动态模式分解(sDMD)是动态模式分解(DMD)的低存储版本,是一种数据驱动的时空流模式提取方法。流式DMD通过使用新的可用数据进行增量更新来近似动态模式,从而避免将整个数据序列存储在内存中。在本文中,我们使用sDMD来识别和提取不同湍流的优势时空结构,这需要对大数据集进行分析。首先,使用公开可用的测试数据集(由直接数值模拟圆柱体后尾流获得的速度场快照组成),将sDMD的效率和精度与经典DMD进行了比较。流式DMD不仅可靠地再现了流的最重要的动态特征;我们的计算还突出了它在所需计算资源方面的优势。随后,我们使用sDMD分析了三种不同的湍流,它们都显示出一定程度的大规模相干性:快速旋转瑞利-巴姆纳德对流、水平对流和渐近吸力边界层(ASBL)。不同频率和空间范围的结构可以清晰地分离,并且仅用几个动态模态就可以捕捉到动力学的突出特征。总之,我们证明了sDMD是识别大范围湍流时空结构的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven identification of the spatiotemporal structure of turbulent flows by streaming dynamic mode decomposition

Streaming Dynamic Mode Decomposition (sDMD) is a low-storage version of dynamic mode decomposition (DMD), a data-driven method to extract spatiotemporal flow patterns. Streaming DMD avoids storing the entire data sequence in memory by approximating the dynamic modes through incremental updates with new available data. In this paper, we use sDMD to identify and extract dominant spatiotemporal structures of different turbulent flows, requiring the analysis of large datasets. First, the efficiency and accuracy of sDMD are compared to the classical DMD, using a publicly available test dataset that consists of velocity field snapshots obtained by direct numerical simulation of a wake flow behind a cylinder. Streaming DMD not only reliably reproduces the most important dynamical features of the flow; our calculations also highlight its advantage in terms of the required computational resources. We subsequently use sDMD to analyse three different turbulent flows that all show some degree of large-scale coherence: rapidly rotating Rayleigh–Bénard convection, horizontal convection and the asymptotic suction boundary layer (ASBL). Structures of different frequencies and spatial extent can be clearly separated, and the prominent features of the dynamics are captured with just a few dynamic modes. In summary, we demonstrate that sDMD is a powerful tool for the identification of spatiotemporal structures in a wide range of turbulent flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
期刊最新文献
Issue Information Fast and interpretable support vector classification based on the truncated ANOVA decomposition A continuum chemo-mechano-biological model for in-stent restenosis with consideration of hemodynamic effects Data-driven methods for quantitative imaging Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1