时延稳定光DWDM网络在3000公里范围内的频率分布

L. Sliwczynski, P. Krehlik, M. Lipinski, K. Turza, A. Binczewski
{"title":"时延稳定光DWDM网络在3000公里范围内的频率分布","authors":"L. Sliwczynski, P. Krehlik, M. Lipinski, K. Turza, A. Binczewski","doi":"10.1109/FCS.2015.7138841","DOIUrl":null,"url":null,"abstract":"In the paper we are presenting the results of the experiments we performed with sending the frequency signals (10 MHz) to the remote location exploiting the optical dense wavelength division multiplexed telecommunication network. To stabilize the phase of the frequency signal we applied the approach with the electronic stabilization of the propagation delay. We measured the residual instability resulting from the fact that in a telecommunication network the signals in the forward and backward direction do not share the same fiber and are transmitted through different pieces of equipment when passing through reconfigurable optical add drop multiplexers or optical amplifiers. Our experiments show that results may depend substantially on the route of the link. For all tested links, however, the stability was better than the stability of the signal generated by commercial 5071A cesium standard. In case of one link even the stability better than stability of H-maser was observed for averaging times longer than 1000 s.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Frequency distribution in delay-stabilized optical DWDM network over the distance of 3000 km\",\"authors\":\"L. Sliwczynski, P. Krehlik, M. Lipinski, K. Turza, A. Binczewski\",\"doi\":\"10.1109/FCS.2015.7138841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we are presenting the results of the experiments we performed with sending the frequency signals (10 MHz) to the remote location exploiting the optical dense wavelength division multiplexed telecommunication network. To stabilize the phase of the frequency signal we applied the approach with the electronic stabilization of the propagation delay. We measured the residual instability resulting from the fact that in a telecommunication network the signals in the forward and backward direction do not share the same fiber and are transmitted through different pieces of equipment when passing through reconfigurable optical add drop multiplexers or optical amplifiers. Our experiments show that results may depend substantially on the route of the link. For all tested links, however, the stability was better than the stability of the signal generated by commercial 5071A cesium standard. In case of one link even the stability better than stability of H-maser was observed for averaging times longer than 1000 s.\",\"PeriodicalId\":57667,\"journal\":{\"name\":\"时间频率公报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"时间频率公报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2015.7138841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了利用光密集波分复用通信网络将频率信号(10mhz)发送到远程位置的实验结果。为了稳定频率信号的相位,我们采用了电子稳定传播延迟的方法。我们测量了由于在电信网络中,向前和向后方向的信号不共享同一根光纤,并且在通过可重构光加丢复用器或光放大器时通过不同的设备传输而导致的剩余不稳定性。我们的实验表明,结果可能在很大程度上取决于链接的路径。然而,对于所有测试链路,其稳定性优于商用5071A铯标准产生的信号的稳定性。在单连杆的情况下,平均时间超过1000 s,稳定性甚至优于h脉泽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency distribution in delay-stabilized optical DWDM network over the distance of 3000 km
In the paper we are presenting the results of the experiments we performed with sending the frequency signals (10 MHz) to the remote location exploiting the optical dense wavelength division multiplexed telecommunication network. To stabilize the phase of the frequency signal we applied the approach with the electronic stabilization of the propagation delay. We measured the residual instability resulting from the fact that in a telecommunication network the signals in the forward and backward direction do not share the same fiber and are transmitted through different pieces of equipment when passing through reconfigurable optical add drop multiplexers or optical amplifiers. Our experiments show that results may depend substantially on the route of the link. For all tested links, however, the stability was better than the stability of the signal generated by commercial 5071A cesium standard. In case of one link even the stability better than stability of H-maser was observed for averaging times longer than 1000 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1135
期刊最新文献
Tutorial session Development of an erbium-fiber-laser-based optical frequency comb at NTSC 6/12-channel synchronous digital phasemeter for ultrastable signal characterization and use Research on time and frequency transfer based on BeiDou common view Preparing ACES-PHARAO data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1