隔离阀接触密封连接紧密性自动评定算法的开发

A. Tatarkanov, I. Aleksandrov, Maksim Mihaylov, Aleksandr Muranov
{"title":"隔离阀接触密封连接紧密性自动评定算法的开发","authors":"A. Tatarkanov, I. Aleksandrov, Maksim Mihaylov, Aleksandr Muranov","doi":"10.30987/1999-8775-2021-10-27-37","DOIUrl":null,"url":null,"abstract":"The paper analyzes the prospects for using applied mathematical and algorithmic support for the study of the sealing ability of contact sealing connections of isolation valves. To ensure the operability of the equipment, it is necessary to determine the required level of sealing forces (contact pressures) that affect the weight and size characteristics of the product. The relevance of the study is related to the task of reducing the amount of time and material resources at the stage of design and experimental testing of pipeline fittings. The purpose of this work is to develop methods for automated assessment of the tightness of contact sealing connections to develop proposals for reducing the required level of contact pressures and weight and size characteristics of isolation valves. The paper presents an overview and analytical study of methods for determining the tightness of contact sealing connections, as well as a mathematical apparatus for modeling surface irregularities and defining sealing characteristics of isolation valve connections. An algorithm for evaluating these parameters has been developed, which modules can be further implemented as software for automating the assessment of the tightness of contact sealing connections at various stages of designing isolation valves. The developed algorithm makes it possible to filter out irrelevant sets of design parameters at the early stages of design without the need for their experimental verification, which will reduce the total amount of time and material resources in the development of isolation valves of pipelines.","PeriodicalId":9358,"journal":{"name":"Bulletin of Bryansk state technical university","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DEVELOPMENT OF ALGORITHM FOR AUTOMATED ASSESSMENT OF THE TIGHTNESS OF CONTACT SEALING CONNECTIONS OF ISOLATION VALVES\",\"authors\":\"A. Tatarkanov, I. Aleksandrov, Maksim Mihaylov, Aleksandr Muranov\",\"doi\":\"10.30987/1999-8775-2021-10-27-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper analyzes the prospects for using applied mathematical and algorithmic support for the study of the sealing ability of contact sealing connections of isolation valves. To ensure the operability of the equipment, it is necessary to determine the required level of sealing forces (contact pressures) that affect the weight and size characteristics of the product. The relevance of the study is related to the task of reducing the amount of time and material resources at the stage of design and experimental testing of pipeline fittings. The purpose of this work is to develop methods for automated assessment of the tightness of contact sealing connections to develop proposals for reducing the required level of contact pressures and weight and size characteristics of isolation valves. The paper presents an overview and analytical study of methods for determining the tightness of contact sealing connections, as well as a mathematical apparatus for modeling surface irregularities and defining sealing characteristics of isolation valve connections. An algorithm for evaluating these parameters has been developed, which modules can be further implemented as software for automating the assessment of the tightness of contact sealing connections at various stages of designing isolation valves. The developed algorithm makes it possible to filter out irrelevant sets of design parameters at the early stages of design without the need for their experimental verification, which will reduce the total amount of time and material resources in the development of isolation valves of pipelines.\",\"PeriodicalId\":9358,\"journal\":{\"name\":\"Bulletin of Bryansk state technical university\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Bryansk state technical university\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/1999-8775-2021-10-27-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Bryansk state technical university","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/1999-8775-2021-10-27-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分析了应用数学和算法支持隔离阀接触密封连接件密封性能研究的前景。为了确保设备的可操作性,有必要确定影响产品重量和尺寸特性的所需密封力(接触压力)水平。该研究的相关性与减少管道管件设计和实验测试阶段的时间和物力量的任务有关。这项工作的目的是开发自动评估接触密封连接紧密性的方法,以制定降低隔离阀所需的接触压力水平以及重量和尺寸特性的建议。本文概述和分析了确定接触密封连接紧密性的方法,以及用于模拟表面不规则性和定义隔离阀连接密封特性的数学装置。开发了一种评估这些参数的算法,这些模块可以进一步作为软件实现,在隔离阀设计的各个阶段自动评估接触密封连接的紧密性。该算法可以在设计初期过滤掉不相关的设计参数集,而无需对其进行实验验证,从而减少了管道隔离阀开发的时间和物力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEVELOPMENT OF ALGORITHM FOR AUTOMATED ASSESSMENT OF THE TIGHTNESS OF CONTACT SEALING CONNECTIONS OF ISOLATION VALVES
The paper analyzes the prospects for using applied mathematical and algorithmic support for the study of the sealing ability of contact sealing connections of isolation valves. To ensure the operability of the equipment, it is necessary to determine the required level of sealing forces (contact pressures) that affect the weight and size characteristics of the product. The relevance of the study is related to the task of reducing the amount of time and material resources at the stage of design and experimental testing of pipeline fittings. The purpose of this work is to develop methods for automated assessment of the tightness of contact sealing connections to develop proposals for reducing the required level of contact pressures and weight and size characteristics of isolation valves. The paper presents an overview and analytical study of methods for determining the tightness of contact sealing connections, as well as a mathematical apparatus for modeling surface irregularities and defining sealing characteristics of isolation valve connections. An algorithm for evaluating these parameters has been developed, which modules can be further implemented as software for automating the assessment of the tightness of contact sealing connections at various stages of designing isolation valves. The developed algorithm makes it possible to filter out irrelevant sets of design parameters at the early stages of design without the need for their experimental verification, which will reduce the total amount of time and material resources in the development of isolation valves of pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SEARCH FOR WAYS TO IMPROVE THE TRACTION PROPERTIES OF LOCOMOTIVES AND TRACTION DRIVE DESIGN METHODS TO ESTIMATE ECONOMIC EFFICIENCY OF APPLYING POLYMER-BITUMEN BINDERS EVALUATION OF SURFACE DEFECTS OF PRODUCTS USING DIGITAL TECHNOLOGIES UNMANNED URBAN AIR MOBILITY: TECHNOLOGIES OF THE NEAR FUTURE ENSURING TIGHTNESS IN PRESSURE COUPLING PARTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1