{"title":"从翻译看语篇连接词的意义注释:翻译点拨技术","authors":"Bruno Cartoni, S. Zufferey, T. Meyer","doi":"10.5087/DAD.2013.204","DOIUrl":null,"url":null,"abstract":"The various meanings of discourse connectives like while and however are difficult to identify and annotate, even for trained human annotators. This problem is all the more important that connectives are salient textual markers of cohesion and need to be correctly interpreted for many NLP applications. In this paper, we suggest an alternative route to reach a reliable annotation of connectives, by making use of the information provided by their translation in large parallel corpora. This method thus replaces the difficult explicit reasoning involved in traditional sense annotation by an empirical clustering of the senses emerging from the translations. We argue that this method has the advantage of providing more reliable reference data than traditional sense annotation. In addition, its simplicity allows for the rapid constitution of large annotated datasets.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"28 1","pages":"65-86"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Annotating the meaning of discourse connectives by looking at their translation: The translation-spotting technique\",\"authors\":\"Bruno Cartoni, S. Zufferey, T. Meyer\",\"doi\":\"10.5087/DAD.2013.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The various meanings of discourse connectives like while and however are difficult to identify and annotate, even for trained human annotators. This problem is all the more important that connectives are salient textual markers of cohesion and need to be correctly interpreted for many NLP applications. In this paper, we suggest an alternative route to reach a reliable annotation of connectives, by making use of the information provided by their translation in large parallel corpora. This method thus replaces the difficult explicit reasoning involved in traditional sense annotation by an empirical clustering of the senses emerging from the translations. We argue that this method has the advantage of providing more reliable reference data than traditional sense annotation. In addition, its simplicity allows for the rapid constitution of large annotated datasets.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"28 1\",\"pages\":\"65-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5087/DAD.2013.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5087/DAD.2013.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Annotating the meaning of discourse connectives by looking at their translation: The translation-spotting technique
The various meanings of discourse connectives like while and however are difficult to identify and annotate, even for trained human annotators. This problem is all the more important that connectives are salient textual markers of cohesion and need to be correctly interpreted for many NLP applications. In this paper, we suggest an alternative route to reach a reliable annotation of connectives, by making use of the information provided by their translation in large parallel corpora. This method thus replaces the difficult explicit reasoning involved in traditional sense annotation by an empirical clustering of the senses emerging from the translations. We argue that this method has the advantage of providing more reliable reference data than traditional sense annotation. In addition, its simplicity allows for the rapid constitution of large annotated datasets.
期刊介绍:
D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.