S. Lyu, Yang Xiang, Tiantian Tang, Ling Pei, Wenxian Yu, T. Truong
{"title":"稀疏网络下区域垂直电离层一致模式及其在PPP-RTK中的应用","authors":"S. Lyu, Yang Xiang, Tiantian Tang, Ling Pei, Wenxian Yu, T. Truong","doi":"10.33012/navi.568","DOIUrl":null,"url":null,"abstract":"Ionospheric augmentation is one of the most important dependences of PPP-RTK. Because of the dispersive features of the ionosphere, the ionospheric information is usually coupled with satellite-and receiver-related biases. This will pose a hidden trouble of inconsistent ionospheric corrections if different numbers of reference stations are involved in calculation. In this paper, we aimed at introducing a consistent regional vertical ionospheric model (RVIM) by estimating receiver biases. We first presented the inconsistent ionospheric corrections under sparse networks. Then the RVIM is compared with the International GNSS Service (IGS) final global ionospheric map (GIM) product, and the average of differences between them is 1.13 TECU. Furthermore, the slant ionospheric corrections were employed as a reference to evaluate both RVIM and GIM. The mean RMS values are 1.48 and 2.23 TECU for the RVIM and GIM, respectively. Finally, we applied the RVIM into PPP-RTK. Results indicate that the PPP-RTK with RVIM constraints achieves improvements in horizontal errors, vertical errors, and convergence time by 43.45, 29.3, and 22.6% under the 68% confidence level, compared with the conventional PPP-AR.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Consistent Regional Vertical Ionospheric Model and Application in PPP-RTK Under Sparse Networks\",\"authors\":\"S. Lyu, Yang Xiang, Tiantian Tang, Ling Pei, Wenxian Yu, T. Truong\",\"doi\":\"10.33012/navi.568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionospheric augmentation is one of the most important dependences of PPP-RTK. Because of the dispersive features of the ionosphere, the ionospheric information is usually coupled with satellite-and receiver-related biases. This will pose a hidden trouble of inconsistent ionospheric corrections if different numbers of reference stations are involved in calculation. In this paper, we aimed at introducing a consistent regional vertical ionospheric model (RVIM) by estimating receiver biases. We first presented the inconsistent ionospheric corrections under sparse networks. Then the RVIM is compared with the International GNSS Service (IGS) final global ionospheric map (GIM) product, and the average of differences between them is 1.13 TECU. Furthermore, the slant ionospheric corrections were employed as a reference to evaluate both RVIM and GIM. The mean RMS values are 1.48 and 2.23 TECU for the RVIM and GIM, respectively. Finally, we applied the RVIM into PPP-RTK. Results indicate that the PPP-RTK with RVIM constraints achieves improvements in horizontal errors, vertical errors, and convergence time by 43.45, 29.3, and 22.6% under the 68% confidence level, compared with the conventional PPP-AR.\",\"PeriodicalId\":56075,\"journal\":{\"name\":\"Navigation-Journal of the Institute of Navigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Navigation-Journal of the Institute of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33012/navi.568\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.568","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A Consistent Regional Vertical Ionospheric Model and Application in PPP-RTK Under Sparse Networks
Ionospheric augmentation is one of the most important dependences of PPP-RTK. Because of the dispersive features of the ionosphere, the ionospheric information is usually coupled with satellite-and receiver-related biases. This will pose a hidden trouble of inconsistent ionospheric corrections if different numbers of reference stations are involved in calculation. In this paper, we aimed at introducing a consistent regional vertical ionospheric model (RVIM) by estimating receiver biases. We first presented the inconsistent ionospheric corrections under sparse networks. Then the RVIM is compared with the International GNSS Service (IGS) final global ionospheric map (GIM) product, and the average of differences between them is 1.13 TECU. Furthermore, the slant ionospheric corrections were employed as a reference to evaluate both RVIM and GIM. The mean RMS values are 1.48 and 2.23 TECU for the RVIM and GIM, respectively. Finally, we applied the RVIM into PPP-RTK. Results indicate that the PPP-RTK with RVIM constraints achieves improvements in horizontal errors, vertical errors, and convergence time by 43.45, 29.3, and 22.6% under the 68% confidence level, compared with the conventional PPP-AR.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.