基于传感器的印度传统医学(Siddha)机器学习分类与评价方法

J. R. Florence, S. Priyadharsini, G. S. Chandran
{"title":"基于传感器的印度传统医学(Siddha)机器学习分类与评价方法","authors":"J. R. Florence, S. Priyadharsini, G. S. Chandran","doi":"10.3329/jsr.v14i1.54739","DOIUrl":null,"url":null,"abstract":"The present work analyses sensor based classification and evaluation methods for the evaluation of churna. The churna is a powdered form of Siddha medicine. The churna is evaluated based on organoleptic and physicochemical parameters. The organoleptic parameters such as color and physicochemical parameters such as moisture content value and pH value are analysed in this work. The proposed methodology facilitates the development and integration of hardware and software modules for churna identification and classification. The proposed hardware setup comprises Raspberry pi camera, color sensor, moisture sensor and pH sensor interfaced with raspberry pi 3b.  Churnas are discriminated by classifying the color values using machine learning algorithms such as the Support Vector Machine (SVM) and Random Forest (RF) classifiers separately. The experimental results depict that the performance of the RF Classifier excels the SVM Classifier in churna name identification with greater accuracy, sensitivity and specificity.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor Based Classification and Evaluation Methods using Machine Learning Algorithm for the Evaluation of Indian Traditional Medicine (Siddha)\",\"authors\":\"J. R. Florence, S. Priyadharsini, G. S. Chandran\",\"doi\":\"10.3329/jsr.v14i1.54739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work analyses sensor based classification and evaluation methods for the evaluation of churna. The churna is a powdered form of Siddha medicine. The churna is evaluated based on organoleptic and physicochemical parameters. The organoleptic parameters such as color and physicochemical parameters such as moisture content value and pH value are analysed in this work. The proposed methodology facilitates the development and integration of hardware and software modules for churna identification and classification. The proposed hardware setup comprises Raspberry pi camera, color sensor, moisture sensor and pH sensor interfaced with raspberry pi 3b.  Churnas are discriminated by classifying the color values using machine learning algorithms such as the Support Vector Machine (SVM) and Random Forest (RF) classifiers separately. The experimental results depict that the performance of the RF Classifier excels the SVM Classifier in churna name identification with greater accuracy, sensitivity and specificity.\",\"PeriodicalId\":16984,\"journal\":{\"name\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jsr.v14i1.54739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i1.54739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了基于传感器的芜菁分类和评价方法。churna是Siddha药物的粉末形式。根据感官和理化参数对其进行评价。分析了颜色等感官参数和水分、pH值等理化参数。所提出的方法有助于开发和集成用于churna识别和分类的硬件和软件模块。提出的硬件设置包括树莓派相机,颜色传感器,湿度传感器和pH传感器与树莓派3b接口。通过分别使用支持向量机(SVM)和随机森林(RF)分类器等机器学习算法对颜色值进行分类来区分Churnas。实验结果表明,射频分类器在菜名识别方面的性能优于支持向量机分类器,具有更高的准确性、灵敏度和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor Based Classification and Evaluation Methods using Machine Learning Algorithm for the Evaluation of Indian Traditional Medicine (Siddha)
The present work analyses sensor based classification and evaluation methods for the evaluation of churna. The churna is a powdered form of Siddha medicine. The churna is evaluated based on organoleptic and physicochemical parameters. The organoleptic parameters such as color and physicochemical parameters such as moisture content value and pH value are analysed in this work. The proposed methodology facilitates the development and integration of hardware and software modules for churna identification and classification. The proposed hardware setup comprises Raspberry pi camera, color sensor, moisture sensor and pH sensor interfaced with raspberry pi 3b.  Churnas are discriminated by classifying the color values using machine learning algorithms such as the Support Vector Machine (SVM) and Random Forest (RF) classifiers separately. The experimental results depict that the performance of the RF Classifier excels the SVM Classifier in churna name identification with greater accuracy, sensitivity and specificity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
期刊最新文献
Modeling and Simulation of Semiactive and Active Suspension System using Quarter Car Model Study of A Ferroelectric Liquid Crystal Mesogen by Geometrical Optimization and Electro-Optic Characterization Anisotropic L. R. S. Bianchi type-V Cosmological Models with Bulk Viscous String within the Framework of Saez-Ballester Theory in Five-Dimensional Spacetime Effect of Calcined Eggshell Particles on Some Properties and Microstructure of Al-Si-Mg Alloy Synthesis of New Mn(II), Co(II) and Cu(II) Complexes Grabbed in Novel Functionalized Ionic Liquid Tagged Schiff base: Physico-chemical Properties and Antibacterial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1