异构设备物联网中自组织网格拓扑的形成

Dudu Ok, F. Ahmed, Mohit Agnihotri, C. Cavdar
{"title":"异构设备物联网中自组织网格拓扑的形成","authors":"Dudu Ok, F. Ahmed, Mohit Agnihotri, C. Cavdar","doi":"10.1109/EuCNC.2017.7980779","DOIUrl":null,"url":null,"abstract":"This paper focuses on the design of self-organizing algorithms for mesh topology formation between low-power short-range heterogeneous devices. To this end, we consider randomly deployed devices that are heterogeneous in terms of characteristics such as energy source (e.g. mains, rechargeable battery, and coin-cell), computational resources, and communication capabilities. Resilient topology formation is considered in a Bluetooth based setting, where devices communicate locally to form pico-nets comprising of devices in master and slave roles. These pico-nets are connected via primary and secondary bridges that forward the traffic between the pico-nets. A role suitability metric based on the device characteristics (e.g. energy source and number of neighbors) is used to assign appropriate roles to devices. By energy aware RSM based topology formation, more than 100% increase in network lifetime over the baseline approach is achieved. And by adding secondary bridges between piconets ≈ 35% further increase in network lifetime is shown.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"52 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Self-organizing mesh topology formation in Internet of things with heterogeneous devices\",\"authors\":\"Dudu Ok, F. Ahmed, Mohit Agnihotri, C. Cavdar\",\"doi\":\"10.1109/EuCNC.2017.7980779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the design of self-organizing algorithms for mesh topology formation between low-power short-range heterogeneous devices. To this end, we consider randomly deployed devices that are heterogeneous in terms of characteristics such as energy source (e.g. mains, rechargeable battery, and coin-cell), computational resources, and communication capabilities. Resilient topology formation is considered in a Bluetooth based setting, where devices communicate locally to form pico-nets comprising of devices in master and slave roles. These pico-nets are connected via primary and secondary bridges that forward the traffic between the pico-nets. A role suitability metric based on the device characteristics (e.g. energy source and number of neighbors) is used to assign appropriate roles to devices. By energy aware RSM based topology formation, more than 100% increase in network lifetime over the baseline approach is achieved. And by adding secondary bridges between piconets ≈ 35% further increase in network lifetime is shown.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"52 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文重点研究了小功率近距离异构器件间网格拓扑形成的自组织算法设计。为此,我们考虑随机部署的设备,这些设备在能源(例如电源、可充电电池和硬币电池)、计算资源和通信能力等特征方面是异构的。在基于蓝牙的设置中,考虑弹性拓扑形成,其中设备在本地通信以形成由主设备和从设备组成的微型网络。这些微网通过主网桥和辅助网桥连接,转发微网之间的流量。基于设备特征的角色适用性度量(例如,能量来源和邻居数量)用于为设备分配适当的角色。通过基于能量感知RSM的拓扑形成,可以实现比基线方法增加100%以上的网络生命周期。通过在微微网之间增加二次桥接,可以进一步增加约35%的网络寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organizing mesh topology formation in Internet of things with heterogeneous devices
This paper focuses on the design of self-organizing algorithms for mesh topology formation between low-power short-range heterogeneous devices. To this end, we consider randomly deployed devices that are heterogeneous in terms of characteristics such as energy source (e.g. mains, rechargeable battery, and coin-cell), computational resources, and communication capabilities. Resilient topology formation is considered in a Bluetooth based setting, where devices communicate locally to form pico-nets comprising of devices in master and slave roles. These pico-nets are connected via primary and secondary bridges that forward the traffic between the pico-nets. A role suitability metric based on the device characteristics (e.g. energy source and number of neighbors) is used to assign appropriate roles to devices. By energy aware RSM based topology formation, more than 100% increase in network lifetime over the baseline approach is achieved. And by adding secondary bridges between piconets ≈ 35% further increase in network lifetime is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lousy processing increases energy efficiency in massive MIMO systems Link performance evaluation for mm-Wave systems Internet of skills, where robotics meets AI, 5G and the Tactile Internet Vehicle clustering for improving enhanced LTE-V2X network performance Silicon area of FBMC receivers for CMOS 65nm and comparison to OFDM receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1