将源代码链接到未纠缠的更改意图

Xiaoyu Liu, LiGuo Huang, Chuanyi Liu, Vincent Ng
{"title":"将源代码链接到未纠缠的更改意图","authors":"Xiaoyu Liu, LiGuo Huang, Chuanyi Liu, Vincent Ng","doi":"10.1109/ICSME.2018.00047","DOIUrl":null,"url":null,"abstract":"Previous work [13] suggests that tangled changes (i.e., different change intents aggregated in one single commit message) could complicate tracing to different change tasks when developers manage software changes. Identifying links from changed source code to untangled change intents could help developers solve this problem. Manually identifying such links requires lots of experience and review efforts, however. Unfortunately, there is no automatic method that provides this capability. In this paper, we propose AutoCILink, which automatically identifies code to untangled change intent links with a pattern-based link identification system (AutoCILink-P) and a supervised learning-based link classification system (AutoCILink-ML). Evaluation results demonstrate the effectiveness of both systems: the pattern-based AutoCILink-P and the supervised learning-based AutoCILink-ML achieve average accuracy of 74.6% and 81.2%, respectively.","PeriodicalId":6572,"journal":{"name":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"19 1","pages":"393-403"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Linking Source Code to Untangled Change Intents\",\"authors\":\"Xiaoyu Liu, LiGuo Huang, Chuanyi Liu, Vincent Ng\",\"doi\":\"10.1109/ICSME.2018.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work [13] suggests that tangled changes (i.e., different change intents aggregated in one single commit message) could complicate tracing to different change tasks when developers manage software changes. Identifying links from changed source code to untangled change intents could help developers solve this problem. Manually identifying such links requires lots of experience and review efforts, however. Unfortunately, there is no automatic method that provides this capability. In this paper, we propose AutoCILink, which automatically identifies code to untangled change intent links with a pattern-based link identification system (AutoCILink-P) and a supervised learning-based link classification system (AutoCILink-ML). Evaluation results demonstrate the effectiveness of both systems: the pattern-based AutoCILink-P and the supervised learning-based AutoCILink-ML achieve average accuracy of 74.6% and 81.2%, respectively.\",\"PeriodicalId\":6572,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"19 1\",\"pages\":\"393-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME.2018.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

先前的工作[13]表明,当开发人员管理软件变更时,纠结的变更(即,在单个提交消息中聚集了不同的变更意图)可能会使跟踪到不同的变更任务变得复杂。识别从已更改的源代码到未纠缠的更改意图的链接可以帮助开发人员解决这个问题。然而,手动识别这样的链接需要大量的经验和审查工作。不幸的是,没有提供此功能的自动方法。在本文中,我们提出了AutoCILink,它通过基于模式的链接识别系统(AutoCILink- p)和基于监督学习的链接分类系统(AutoCILink- ml)自动识别代码以解纠缠的更改意图链接。评估结果证明了两种系统的有效性:基于模式的AutoCILink-P和基于监督学习的AutoCILink-ML的平均准确率分别为74.6%和81.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linking Source Code to Untangled Change Intents
Previous work [13] suggests that tangled changes (i.e., different change intents aggregated in one single commit message) could complicate tracing to different change tasks when developers manage software changes. Identifying links from changed source code to untangled change intents could help developers solve this problem. Manually identifying such links requires lots of experience and review efforts, however. Unfortunately, there is no automatic method that provides this capability. In this paper, we propose AutoCILink, which automatically identifies code to untangled change intent links with a pattern-based link identification system (AutoCILink-P) and a supervised learning-based link classification system (AutoCILink-ML). Evaluation results demonstrate the effectiveness of both systems: the pattern-based AutoCILink-P and the supervised learning-based AutoCILink-ML achieve average accuracy of 74.6% and 81.2%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studying the Impact of Policy Changes on Bug Handling Performance Test Re-Prioritization in Continuous Testing Environments Threats of Aggregating Software Repository Data Studying Permission Related Issues in Android Wearable Apps NLP2API: Query Reformulation for Code Search Using Crowdsourced Knowledge and Extra-Large Data Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1