{"title":"边缘到云连续体的多目标鲁棒工作流卸载","authors":"Hongyun Liu, Ruyue Xin, Peng Chen, Zhiming Zhao","doi":"10.1109/CLOUD55607.2022.00070","DOIUrl":null,"url":null,"abstract":"Workflow offloading in the edge-to-cloud continuum copes with an extended calculation network among edge devices and cloud platforms. With the growing significance of edge and cloud technologies, workflow offloading among these environments has been investigated in recent years. However, the dynamics of offloading optimization objectives, i.e., latency, resource utilization rate, and energy consumption among the edge and cloud sides, have hardly been researched. Consequently, the Quality of Service(QoS) and offloading performance also experience uncertain deviation. In this work, we propose a multi-objective robust offloading algorithm to address this issue, dealing with dynamics and multi-objective optimization. The workflow request model in this work is modeled as Directed Acyclic Graph(DAG). An LSTM-based sequence-to-sequence neural network learns the offloading policy. We then conduct comprehensive implementations to validate the robustness of our algorithm. As a result, our algorithm achieves better offloading performance regarding each objective and faster adaptation to newly changed environments than fine-tuned typical single-objective RL-based offloading methods.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"20 1","pages":"469-478"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Objective Robust Workflow Offloading in Edge-to-Cloud Continuum\",\"authors\":\"Hongyun Liu, Ruyue Xin, Peng Chen, Zhiming Zhao\",\"doi\":\"10.1109/CLOUD55607.2022.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Workflow offloading in the edge-to-cloud continuum copes with an extended calculation network among edge devices and cloud platforms. With the growing significance of edge and cloud technologies, workflow offloading among these environments has been investigated in recent years. However, the dynamics of offloading optimization objectives, i.e., latency, resource utilization rate, and energy consumption among the edge and cloud sides, have hardly been researched. Consequently, the Quality of Service(QoS) and offloading performance also experience uncertain deviation. In this work, we propose a multi-objective robust offloading algorithm to address this issue, dealing with dynamics and multi-objective optimization. The workflow request model in this work is modeled as Directed Acyclic Graph(DAG). An LSTM-based sequence-to-sequence neural network learns the offloading policy. We then conduct comprehensive implementations to validate the robustness of our algorithm. As a result, our algorithm achieves better offloading performance regarding each objective and faster adaptation to newly changed environments than fine-tuned typical single-objective RL-based offloading methods.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"20 1\",\"pages\":\"469-478\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Multi-Objective Robust Workflow Offloading in Edge-to-Cloud Continuum
Workflow offloading in the edge-to-cloud continuum copes with an extended calculation network among edge devices and cloud platforms. With the growing significance of edge and cloud technologies, workflow offloading among these environments has been investigated in recent years. However, the dynamics of offloading optimization objectives, i.e., latency, resource utilization rate, and energy consumption among the edge and cloud sides, have hardly been researched. Consequently, the Quality of Service(QoS) and offloading performance also experience uncertain deviation. In this work, we propose a multi-objective robust offloading algorithm to address this issue, dealing with dynamics and multi-objective optimization. The workflow request model in this work is modeled as Directed Acyclic Graph(DAG). An LSTM-based sequence-to-sequence neural network learns the offloading policy. We then conduct comprehensive implementations to validate the robustness of our algorithm. As a result, our algorithm achieves better offloading performance regarding each objective and faster adaptation to newly changed environments than fine-tuned typical single-objective RL-based offloading methods.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)