基于云的现场级分散控制系统体系结构

D. Tomzik, X. Xu
{"title":"基于云的现场级分散控制系统体系结构","authors":"D. Tomzik, X. Xu","doi":"10.1109/COASE.2018.8560418","DOIUrl":null,"url":null,"abstract":"Conventional control systems for machine tools and manufacturing systems are often limited in their computational power, connectivity and interoperability. Cloud-based control systems are a solution that addresses these issues. Advantages of the cloud are the elasticity of computational power (Infrastructure as a Service) and a plethora of development tools (Platform as a Service). The developed solutions are based on a local control system with an additional connection to the cloud. Communication and control of the field level run centralised through this control system. To try for more flexibility, we propose an approach where individual components at the field level are directly connected to the cloud. They are equipped with computational resources, connected directly to a TCP/IP network and communicate with each other and perform control tasks. This had been made possible by ever-shrinking integrated circuits at lower prices. In this paper, a possible use scenario, hardware candidates, and firmware aspects are presented. For an initial examination, the findings were compared against requirements for cloud-based control in the application area of soft-tissue interaction. This proposed architecture will be the basis for a prototype in the future.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"28 1","pages":"353-358"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Architecture of a Cloud-Based Control System Decentralised at Field Level\",\"authors\":\"D. Tomzik, X. Xu\",\"doi\":\"10.1109/COASE.2018.8560418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional control systems for machine tools and manufacturing systems are often limited in their computational power, connectivity and interoperability. Cloud-based control systems are a solution that addresses these issues. Advantages of the cloud are the elasticity of computational power (Infrastructure as a Service) and a plethora of development tools (Platform as a Service). The developed solutions are based on a local control system with an additional connection to the cloud. Communication and control of the field level run centralised through this control system. To try for more flexibility, we propose an approach where individual components at the field level are directly connected to the cloud. They are equipped with computational resources, connected directly to a TCP/IP network and communicate with each other and perform control tasks. This had been made possible by ever-shrinking integrated circuits at lower prices. In this paper, a possible use scenario, hardware candidates, and firmware aspects are presented. For an initial examination, the findings were compared against requirements for cloud-based control in the application area of soft-tissue interaction. This proposed architecture will be the basis for a prototype in the future.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"28 1\",\"pages\":\"353-358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机床和制造系统的传统控制系统通常在计算能力、连接性和互操作性方面受到限制。基于云的控制系统是解决这些问题的一种解决方案。云的优点是计算能力的弹性(基础设施即服务)和大量的开发工具(平台即服务)。开发的解决方案基于本地控制系统,并附加了与云的连接。现场一级的通信和控制通过该控制系统集中运行。为了获得更大的灵活性,我们提出了一种方法,将现场级别的单个组件直接连接到云。它们配备了计算资源,直接连接到TCP/IP网络,相互通信并执行控制任务。这是由于集成电路的体积越来越小,价格也越来越低。在本文中,提出了一个可能的使用场景、硬件候选和固件方面。对于初步检查,将结果与软组织相互作用应用领域中基于云的控制要求进行比较。这个被提议的体系结构将成为未来原型的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architecture of a Cloud-Based Control System Decentralised at Field Level
Conventional control systems for machine tools and manufacturing systems are often limited in their computational power, connectivity and interoperability. Cloud-based control systems are a solution that addresses these issues. Advantages of the cloud are the elasticity of computational power (Infrastructure as a Service) and a plethora of development tools (Platform as a Service). The developed solutions are based on a local control system with an additional connection to the cloud. Communication and control of the field level run centralised through this control system. To try for more flexibility, we propose an approach where individual components at the field level are directly connected to the cloud. They are equipped with computational resources, connected directly to a TCP/IP network and communicate with each other and perform control tasks. This had been made possible by ever-shrinking integrated circuits at lower prices. In this paper, a possible use scenario, hardware candidates, and firmware aspects are presented. For an initial examination, the findings were compared against requirements for cloud-based control in the application area of soft-tissue interaction. This proposed architecture will be the basis for a prototype in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1