问题路由到用户社区

Aditya Pal, Fei Wang, Michelle X. Zhou, Jeffrey Nichols, Barton A. Smith
{"title":"问题路由到用户社区","authors":"Aditya Pal, Fei Wang, Michelle X. Zhou, Jeffrey Nichols, Barton A. Smith","doi":"10.1145/2505515.2505669","DOIUrl":null,"url":null,"abstract":"An online community consists of a group of users who share a common interest, background, or experience and their collective goal is to contribute towards the welfare of the community members. Question answering is an important feature that enables community members to exchange knowledge within the community boundary. The overwhelming number of communities necessitates the need for a good question routing strategy so that new questions gets routed to the appropriately focused community and thus get resolved. In this paper, we consider the novel problem of routing questions to the right community and propose a framework to select the right set of communities for a question. We begin by using several prior proposed features for users and add some additional features, namely language attributes and inclination to respond, for community modeling. Then we introduce two k nearest neighbor based aggregation algorithms for computing community scores. We show how these scores can be combined to recommend communities and test the effectiveness of the recommendations over a large real world dataset.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Question routing to user communities\",\"authors\":\"Aditya Pal, Fei Wang, Michelle X. Zhou, Jeffrey Nichols, Barton A. Smith\",\"doi\":\"10.1145/2505515.2505669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An online community consists of a group of users who share a common interest, background, or experience and their collective goal is to contribute towards the welfare of the community members. Question answering is an important feature that enables community members to exchange knowledge within the community boundary. The overwhelming number of communities necessitates the need for a good question routing strategy so that new questions gets routed to the appropriately focused community and thus get resolved. In this paper, we consider the novel problem of routing questions to the right community and propose a framework to select the right set of communities for a question. We begin by using several prior proposed features for users and add some additional features, namely language attributes and inclination to respond, for community modeling. Then we introduce two k nearest neighbor based aggregation algorithms for computing community scores. We show how these scores can be combined to recommend communities and test the effectiveness of the recommendations over a large real world dataset.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

一个在线社区由一群拥有共同兴趣、背景或经验的用户组成,他们的共同目标是为社区成员的福利做出贡献。问答是使社区成员能够在社区边界内交换知识的重要功能。数量庞大的社区需要一个好的问题路由策略,以便将新问题路由到适当关注的社区,从而得到解决。在本文中,我们考虑了将问题路由到正确社区的新问题,并提出了一个为问题选择正确社区集的框架。我们首先使用先前为用户提出的几个特性,并添加一些额外的特性,即语言属性和响应倾向,用于社区建模。然后介绍了两种基于k近邻的社区评分聚合算法。我们展示了如何将这些分数结合起来推荐社区,并在一个大型的真实世界数据集上测试推荐的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Question routing to user communities
An online community consists of a group of users who share a common interest, background, or experience and their collective goal is to contribute towards the welfare of the community members. Question answering is an important feature that enables community members to exchange knowledge within the community boundary. The overwhelming number of communities necessitates the need for a good question routing strategy so that new questions gets routed to the appropriately focused community and thus get resolved. In this paper, we consider the novel problem of routing questions to the right community and propose a framework to select the right set of communities for a question. We begin by using several prior proposed features for users and add some additional features, namely language attributes and inclination to respond, for community modeling. Then we introduce two k nearest neighbor based aggregation algorithms for computing community scores. We show how these scores can be combined to recommend communities and test the effectiveness of the recommendations over a large real world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1