使用可变形部件模型的夜间车辆检测

Jiajie Chen, Jianda Chen, Feng Gu
{"title":"使用可变形部件模型的夜间车辆检测","authors":"Jiajie Chen, Jianda Chen, Feng Gu","doi":"10.1109/IHMSC.2015.223","DOIUrl":null,"url":null,"abstract":"Vehicle detection at night time is of great importance for applications toward advanced driver assistance system. In this paper, we propose a method using deformable parts model for night time vehicle detection. Before detection, we use Nakagami distribution to find the regions of saliency. After that, we consider the regions in which pairs of regions of saliency are almost at the same horizontal line as our regions of interest. Within those regions of interest, we apply the pre-trained deformable parts model to detect vehicles. The experimental result are provided to demonstrate the effectiveness of our method.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"164 1","pages":"480-483"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nighttime Vehicle Detection Using Deformable Parts Model\",\"authors\":\"Jiajie Chen, Jianda Chen, Feng Gu\",\"doi\":\"10.1109/IHMSC.2015.223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle detection at night time is of great importance for applications toward advanced driver assistance system. In this paper, we propose a method using deformable parts model for night time vehicle detection. Before detection, we use Nakagami distribution to find the regions of saliency. After that, we consider the regions in which pairs of regions of saliency are almost at the same horizontal line as our regions of interest. Within those regions of interest, we apply the pre-trained deformable parts model to detect vehicles. The experimental result are provided to demonstrate the effectiveness of our method.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"164 1\",\"pages\":\"480-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

夜间车辆检测对于高级驾驶辅助系统的应用具有重要意义。本文提出了一种基于可变形零件模型的夜间车辆检测方法。在检测之前,我们使用Nakagami分布来寻找显著性区域。在那之后,我们考虑那些显著区域对与我们感兴趣的区域几乎在同一水平线上的区域。在这些感兴趣的区域内,我们应用预训练的可变形部件模型来检测车辆。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nighttime Vehicle Detection Using Deformable Parts Model
Vehicle detection at night time is of great importance for applications toward advanced driver assistance system. In this paper, we propose a method using deformable parts model for night time vehicle detection. Before detection, we use Nakagami distribution to find the regions of saliency. After that, we consider the regions in which pairs of regions of saliency are almost at the same horizontal line as our regions of interest. Within those regions of interest, we apply the pre-trained deformable parts model to detect vehicles. The experimental result are provided to demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams Analysis of Structural Parameters of Metal Multi-convolution Ring Effects of the Plasma Frequency and the Collision Frequency on the Performance of a Smart Plasma Antenna An Efficient Data Transmission Strategy for Cyber-Physical Systems in the Complicated Environment A Multi-objective Optimization Decision Model Assisting the Land-Use Spatial Districting under Hard Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1