基于SDR的5G新无线电原型实现

Lama Y. Hosni, Ahmed Y. Farid, Abdelrahman A. Elsaadany, M. Safwat
{"title":"基于SDR的5G新无线电原型实现","authors":"Lama Y. Hosni, Ahmed Y. Farid, Abdelrahman A. Elsaadany, M. Safwat","doi":"10.4236/cn.2020.121001","DOIUrl":null,"url":null,"abstract":"The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service and performance requirements, various candidate technologies have been proposed in 5G new radio; some are extensions of 4G and, some are developed explicitly for 5G. These candidate technologies include non-Orthogonal Multiple Access (NOMA), and Low Density Parity Check (LDPC) channel coding. In addition, deploying software defined radio (SDR) instead of traditional hardware modules. In this paper we build an open source SDR-based platform to realize the transceiver of the physical downlink shared channel (PDSCH) of 5G NR according to Third Generation Partnership Project (3GPP) standard. We provide a prototype for pairing between two 5G users using NOMA technique. In addition, a suitable design for LDPC channel coding is performed. The intermediate stage of segmentation, rate matching and interleaving are also carried out in order to realize a standard NR frame. Finally, experiments are carried out in both simulation and real time scenario on the designed 5G NR for the purpose of system performance evaluation, and to demonstrate its potential in meeting future 5G mobile network challenges.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"81 1","pages":"1-27"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"5G New Radio Prototype Implementation Based on SDR\",\"authors\":\"Lama Y. Hosni, Ahmed Y. Farid, Abdelrahman A. Elsaadany, M. Safwat\",\"doi\":\"10.4236/cn.2020.121001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service and performance requirements, various candidate technologies have been proposed in 5G new radio; some are extensions of 4G and, some are developed explicitly for 5G. These candidate technologies include non-Orthogonal Multiple Access (NOMA), and Low Density Parity Check (LDPC) channel coding. In addition, deploying software defined radio (SDR) instead of traditional hardware modules. In this paper we build an open source SDR-based platform to realize the transceiver of the physical downlink shared channel (PDSCH) of 5G NR according to Third Generation Partnership Project (3GPP) standard. We provide a prototype for pairing between two 5G users using NOMA technique. In addition, a suitable design for LDPC channel coding is performed. The intermediate stage of segmentation, rate matching and interleaving are also carried out in order to realize a standard NR frame. Finally, experiments are carried out in both simulation and real time scenario on the designed 5G NR for the purpose of system performance evaluation, and to demonstrate its potential in meeting future 5G mobile network challenges.\",\"PeriodicalId\":91826,\"journal\":{\"name\":\"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security\",\"volume\":\"81 1\",\"pages\":\"1-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cn.2020.121001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cn.2020.121001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

第五代(5G)新无线电(NR)已经开发出来,在功率使用和频谱方面提供了可扩展性,灵活性和效率方面的显着改进。为了满足5G的愿景、业务和性能要求,5G新无线电中提出了多种候选技术;有些是4G的延伸,有些是专门为5G开发的。这些候选技术包括非正交多址(NOMA)和低密度奇偶校验(LDPC)信道编码。此外,采用软件定义无线电(SDR)代替传统的硬件模块。本文根据第三代合作伙伴计划(3GPP)标准,构建了一个基于开源sdr的平台,实现5G NR物理下行链路共享信道(PDSCH)的收发。我们提供了一个使用NOMA技术在两个5G用户之间进行配对的原型。此外,还进行了LDPC信道编码的设计。为了实现标准的NR帧,还进行了中间阶段的分割、速率匹配和交织。最后,在仿真和实时场景下对设计的5G NR进行了实验,以评估系统性能,并展示其在应对未来5G移动网络挑战方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G New Radio Prototype Implementation Based on SDR
The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service and performance requirements, various candidate technologies have been proposed in 5G new radio; some are extensions of 4G and, some are developed explicitly for 5G. These candidate technologies include non-Orthogonal Multiple Access (NOMA), and Low Density Parity Check (LDPC) channel coding. In addition, deploying software defined radio (SDR) instead of traditional hardware modules. In this paper we build an open source SDR-based platform to realize the transceiver of the physical downlink shared channel (PDSCH) of 5G NR according to Third Generation Partnership Project (3GPP) standard. We provide a prototype for pairing between two 5G users using NOMA technique. In addition, a suitable design for LDPC channel coding is performed. The intermediate stage of segmentation, rate matching and interleaving are also carried out in order to realize a standard NR frame. Finally, experiments are carried out in both simulation and real time scenario on the designed 5G NR for the purpose of system performance evaluation, and to demonstrate its potential in meeting future 5G mobile network challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Cooperative Cognitive Radio Spectrum Sensing Based on Correlation Sum Method with Linear Equalization ADS-B Reception Error Correction Based on the LSTM Neural-Network Model Why the Incoherent Paradigm is for the Future Wireless Networks? A Meta-Learning Approach for Aircraft Trajectory Prediction Analyses of Virtual MIMO Multi-User System Performance with Linear Precoding Schemes Using Indoor Measurements at 5 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1