{"title":"实验室合成聚乙二醇衍生物","authors":"J. Milton Harris","doi":"10.1080/07366578508081960","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, derivatives of polyethylene glycol (PEG) have proven valuable in a variety of diverse chemical and biological endeavors. Such applications include peptide synthesis, phase transfer catalysis, pharmaceutical modification, protein and cell purifications, polymer-bound reagents, and binding assays. Because of the great deal of interest surrounding this subject, this review will describe generally applicable laboratory methods for preparing PEG derivatives from the parent PEG. We have largely restricted discussion to this starting material because most research laboratories interested in applications are not equipped to handle complex ethylene oxide polymerizations used in large-scale industrial preparations and because PEG and some of its ethers and esters are the only commonly available polymeric starting materials. For the purpose of this review, PEG is defined as those polyoxyethylenes having hydroxyl endgroups and a molecular weight of 20,000 daltons or less.","PeriodicalId":16139,"journal":{"name":"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics","volume":"76 1","pages":"325-373"},"PeriodicalIF":0.0000,"publicationDate":"1985-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"211","resultStr":"{\"title\":\"LABORATORY SYNTHESIS OF POLYETHYLENE GLYCOL DERIVATIVES\",\"authors\":\"J. Milton Harris\",\"doi\":\"10.1080/07366578508081960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, derivatives of polyethylene glycol (PEG) have proven valuable in a variety of diverse chemical and biological endeavors. Such applications include peptide synthesis, phase transfer catalysis, pharmaceutical modification, protein and cell purifications, polymer-bound reagents, and binding assays. Because of the great deal of interest surrounding this subject, this review will describe generally applicable laboratory methods for preparing PEG derivatives from the parent PEG. We have largely restricted discussion to this starting material because most research laboratories interested in applications are not equipped to handle complex ethylene oxide polymerizations used in large-scale industrial preparations and because PEG and some of its ethers and esters are the only commonly available polymeric starting materials. For the purpose of this review, PEG is defined as those polyoxyethylenes having hydroxyl endgroups and a molecular weight of 20,000 daltons or less.\",\"PeriodicalId\":16139,\"journal\":{\"name\":\"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics\",\"volume\":\"76 1\",\"pages\":\"325-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"211\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07366578508081960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07366578508081960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LABORATORY SYNTHESIS OF POLYETHYLENE GLYCOL DERIVATIVES
Abstract In recent years, derivatives of polyethylene glycol (PEG) have proven valuable in a variety of diverse chemical and biological endeavors. Such applications include peptide synthesis, phase transfer catalysis, pharmaceutical modification, protein and cell purifications, polymer-bound reagents, and binding assays. Because of the great deal of interest surrounding this subject, this review will describe generally applicable laboratory methods for preparing PEG derivatives from the parent PEG. We have largely restricted discussion to this starting material because most research laboratories interested in applications are not equipped to handle complex ethylene oxide polymerizations used in large-scale industrial preparations and because PEG and some of its ethers and esters are the only commonly available polymeric starting materials. For the purpose of this review, PEG is defined as those polyoxyethylenes having hydroxyl endgroups and a molecular weight of 20,000 daltons or less.