Voitenko实验用新的诊断检测到89千米/秒的速度

D. Tasker, Y. Bae, Carl Johnson, K. Rainey, C. Campbell, D. Oschwald, C. Reed
{"title":"Voitenko实验用新的诊断检测到89千米/秒的速度","authors":"D. Tasker, Y. Bae, Carl Johnson, K. Rainey, C. Campbell, D. Oschwald, C. Reed","doi":"10.1115/hvis2019-081","DOIUrl":null,"url":null,"abstract":"\n Using a Voitenko accelerator [1-3], a series of experiments were performed with the goal of attaining shock velocities in gases approaching 90 km/s. Typically, the basic apparatus comprises a hemispherical bowl filled with a gas at atmospheric pressure; a metal piston across its diameter; and a small bore evacuated shock tube at its apex, Fig. 1. The evacuated shock tube is separated from the gas bowl by a thin diaphragm. A combination of a plane wave explosive lens and a high explosive pad accelerates the piston to a velocity of the order of 4 km/s and subsequently compresses the gas in the bowl. The thin diaphragm at the other end of the bowl then ruptures and the high pressure (shock compressed) gas escapes into the shock tube.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voitenko experiments with novel diagnostics detect velocities of 89 km/s\",\"authors\":\"D. Tasker, Y. Bae, Carl Johnson, K. Rainey, C. Campbell, D. Oschwald, C. Reed\",\"doi\":\"10.1115/hvis2019-081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Using a Voitenko accelerator [1-3], a series of experiments were performed with the goal of attaining shock velocities in gases approaching 90 km/s. Typically, the basic apparatus comprises a hemispherical bowl filled with a gas at atmospheric pressure; a metal piston across its diameter; and a small bore evacuated shock tube at its apex, Fig. 1. The evacuated shock tube is separated from the gas bowl by a thin diaphragm. A combination of a plane wave explosive lens and a high explosive pad accelerates the piston to a velocity of the order of 4 km/s and subsequently compresses the gas in the bowl. The thin diaphragm at the other end of the bowl then ruptures and the high pressure (shock compressed) gas escapes into the shock tube.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用Voitenko加速器[1-3],进行了一系列实验,目标是在接近90 km/s的气体中获得激波速度。通常,基本装置包括一个半球形的碗,在大气压下充满气体;活塞:横跨其直径的金属活塞;在其顶端有一个小口径抽真空激波管,如图1所示。抽真空的激波管与气碗用薄隔膜隔开。平面波爆炸透镜和高爆炸垫的组合将活塞加速到4公里/秒的速度,随后压缩碗中的气体。然后,碗另一端的薄隔膜破裂,高压(激波压缩)气体逸出进入激波管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voitenko experiments with novel diagnostics detect velocities of 89 km/s
Using a Voitenko accelerator [1-3], a series of experiments were performed with the goal of attaining shock velocities in gases approaching 90 km/s. Typically, the basic apparatus comprises a hemispherical bowl filled with a gas at atmospheric pressure; a metal piston across its diameter; and a small bore evacuated shock tube at its apex, Fig. 1. The evacuated shock tube is separated from the gas bowl by a thin diaphragm. A combination of a plane wave explosive lens and a high explosive pad accelerates the piston to a velocity of the order of 4 km/s and subsequently compresses the gas in the bowl. The thin diaphragm at the other end of the bowl then ruptures and the high pressure (shock compressed) gas escapes into the shock tube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1