非周期函数混合导数的最优恢复方法

Y. V. Semenova, S. G. Solodky
{"title":"非周期函数混合导数的最优恢复方法","authors":"Y. V. Semenova, S. G. Solodky","doi":"10.17721/2706-9699.2022.2.16","DOIUrl":null,"url":null,"abstract":"The problem of numerical differentiation for non-periodic bivariate functions is investigated. For the recovering mixed derivatives of such functions an approach on the base of truncation method is proposed. The constructed algorithms deal with Legendere polynomials, the degree of which is chosen so as to minimize the approximation error. It is established that these algorithms are order-optimal both in terms of accuracy and in the sense of the amount of Galerkin information involved.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"118 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTIMAL METHODS FOR RECOVERING MIXED DERIVATIVES OF NON-PERIODIC FUNCTIONS\",\"authors\":\"Y. V. Semenova, S. G. Solodky\",\"doi\":\"10.17721/2706-9699.2022.2.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of numerical differentiation for non-periodic bivariate functions is investigated. For the recovering mixed derivatives of such functions an approach on the base of truncation method is proposed. The constructed algorithms deal with Legendere polynomials, the degree of which is chosen so as to minimize the approximation error. It is established that these algorithms are order-optimal both in terms of accuracy and in the sense of the amount of Galerkin information involved.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2022.2.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了非周期二元函数的数值微分问题。对于这类函数的混合导数的恢复,提出了一种基于截断法的方法。所构建的算法处理Legendere多项式,选择多项式的阶以使逼近误差最小化。这些算法在精度和涉及的伽辽金信息量方面都是有序最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OPTIMAL METHODS FOR RECOVERING MIXED DERIVATIVES OF NON-PERIODIC FUNCTIONS
The problem of numerical differentiation for non-periodic bivariate functions is investigated. For the recovering mixed derivatives of such functions an approach on the base of truncation method is proposed. The constructed algorithms deal with Legendere polynomials, the degree of which is chosen so as to minimize the approximation error. It is established that these algorithms are order-optimal both in terms of accuracy and in the sense of the amount of Galerkin information involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BOUNDARY VALUE PROBLEMS FOR THE LYAPUNOV EQUATION THE REGULARIZED OPERATOR EXTRAPOLATION ALGORITHM ANALYSIS OF THE CONSTRUCTION OF NUMERICAL METHODS FOR SOLVING THE RICHARDS–KLUTE EQUATION NETWORK FLOW ANALYSIS AS A METHOD OF SUPPLY CHAIN MANAGEMENT OPTIMIZATION EXISTENCE IN SCHWARTZ SPACE AND SOLUTIONS PROPERTIES OF THE HOPF–TYPE EQUATION WITH VARIABLE COEFFICIENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1