econet:一个R包,用于参数依赖的网络中心性度量

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2022-01-01 DOI:10.18637/jss.v102.i08
M. Battaglini, Valerio Leone Sciabolazza, Eleonora Patacchini, Sida Peng
{"title":"econet:一个R包,用于参数依赖的网络中心性度量","authors":"M. Battaglini, Valerio Leone Sciabolazza, Eleonora Patacchini, Sida Peng","doi":"10.18637/jss.v102.i08","DOIUrl":null,"url":null,"abstract":"The R package econet provides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both nonlinear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Ben-efits and features of the econet package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Leone Sciabolazza, and Patacchini (2020).","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"26 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"econet: An R Package for Parameter-Dependent Network Centrality Measures\",\"authors\":\"M. Battaglini, Valerio Leone Sciabolazza, Eleonora Patacchini, Sida Peng\",\"doi\":\"10.18637/jss.v102.i08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The R package econet provides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both nonlinear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Ben-efits and features of the econet package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Leone Sciabolazza, and Patacchini (2020).\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v102.i08\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v102.i08","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

摘要

R包econet提供了使用线性均值模型估计参数相关网络中心性度量的方法。实现了非线性最小二乘估计和极大似然估计。这些方法允许链路和节点在网络效应、内生网络形成和未连接节点的存在方面的异质性。例程还比较了参数依赖的网络中心性度量与标准网络中心性度量的解释力。使用Battaglini和Patacchini(2018)以及Battaglini、Leone Sciabolazza和Patacchini(2020)的数据说明了经济一揽子计划的效益和特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
econet: An R Package for Parameter-Dependent Network Centrality Measures
The R package econet provides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both nonlinear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Ben-efits and features of the econet package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Leone Sciabolazza, and Patacchini (2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1