UAVSAR实时嵌入式GPU处理器

B. Hawkins, W. Tung
{"title":"UAVSAR实时嵌入式GPU处理器","authors":"B. Hawkins, W. Tung","doi":"10.1109/IGARSS.2019.8900055","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) can provide high-resolution imagery regardless of cloud cover or lighting conditions. These qualities make SAR potentially well-suited for informing response efforts to natural and man-made disasters, but such applications require data products with minimal latency. To meet this challenge, we implemented a real-time SAR processor capable of producing 10 m imagery using an NVIDIA Jetson TX2 embedded GPU module. With its low mass (87 g module) and power consumption under 8 W, the system also holds promise for spaceborne applications.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"42 1","pages":"545-547"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UAVSAR Real-Time Embedded GPU Processor\",\"authors\":\"B. Hawkins, W. Tung\",\"doi\":\"10.1109/IGARSS.2019.8900055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) can provide high-resolution imagery regardless of cloud cover or lighting conditions. These qualities make SAR potentially well-suited for informing response efforts to natural and man-made disasters, but such applications require data products with minimal latency. To meet this challenge, we implemented a real-time SAR processor capable of producing 10 m imagery using an NVIDIA Jetson TX2 embedded GPU module. With its low mass (87 g module) and power consumption under 8 W, the system also holds promise for spaceborne applications.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"42 1\",\"pages\":\"545-547\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

合成孔径雷达(SAR)可以提供高分辨率的图像,而不受云层或光照条件的影响。这些特性使得SAR可能非常适合于为自然灾害和人为灾害的响应工作提供信息,但此类应用需要具有最小延迟的数据产品。为了应对这一挑战,我们使用NVIDIA Jetson TX2嵌入式GPU模块实现了能够生成10米图像的实时SAR处理器。凭借其低质量(87克模块)和8w以下的功耗,该系统也有望在太空中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAVSAR Real-Time Embedded GPU Processor
Synthetic aperture radar (SAR) can provide high-resolution imagery regardless of cloud cover or lighting conditions. These qualities make SAR potentially well-suited for informing response efforts to natural and man-made disasters, but such applications require data products with minimal latency. To meet this challenge, we implemented a real-time SAR processor capable of producing 10 m imagery using an NVIDIA Jetson TX2 embedded GPU module. With its low mass (87 g module) and power consumption under 8 W, the system also holds promise for spaceborne applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1