{"title":"服务机器人中人类存在长期预期的时空表征","authors":"Tomáš Vintr, Zhi Yan, T. Duckett, T. Krajník","doi":"10.1109/ICRA.2019.8793534","DOIUrl":null,"url":null,"abstract":"We propose an efficient spatio-temporal model for mobile autonomous robots operating in human populated environments. Our method aims to model periodic temporal patterns of people presence, which are based on peoples’ routines and habits. The core idea is to project the time onto a set of wrapped dimensions that represent the periodicities of people presence. Extending a 2D spatial model with this multidimensional representation of time results in a memory efficient spatio-temporal model. This model is capable of long-term predictions of human presence, allowing mobile robots to schedule their services better and to plan their paths. The experimental evaluation, performed over datasets gathered by a robot over a period of several weeks, indicates that the proposed method achieves more accurate predictions than the previous state of the art used in robotics.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"10 1","pages":"2620-2626"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Spatio-temporal representation for long-term anticipation of human presence in service robotics\",\"authors\":\"Tomáš Vintr, Zhi Yan, T. Duckett, T. Krajník\",\"doi\":\"10.1109/ICRA.2019.8793534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient spatio-temporal model for mobile autonomous robots operating in human populated environments. Our method aims to model periodic temporal patterns of people presence, which are based on peoples’ routines and habits. The core idea is to project the time onto a set of wrapped dimensions that represent the periodicities of people presence. Extending a 2D spatial model with this multidimensional representation of time results in a memory efficient spatio-temporal model. This model is capable of long-term predictions of human presence, allowing mobile robots to schedule their services better and to plan their paths. The experimental evaluation, performed over datasets gathered by a robot over a period of several weeks, indicates that the proposed method achieves more accurate predictions than the previous state of the art used in robotics.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"10 1\",\"pages\":\"2620-2626\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8793534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatio-temporal representation for long-term anticipation of human presence in service robotics
We propose an efficient spatio-temporal model for mobile autonomous robots operating in human populated environments. Our method aims to model periodic temporal patterns of people presence, which are based on peoples’ routines and habits. The core idea is to project the time onto a set of wrapped dimensions that represent the periodicities of people presence. Extending a 2D spatial model with this multidimensional representation of time results in a memory efficient spatio-temporal model. This model is capable of long-term predictions of human presence, allowing mobile robots to schedule their services better and to plan their paths. The experimental evaluation, performed over datasets gathered by a robot over a period of several weeks, indicates that the proposed method achieves more accurate predictions than the previous state of the art used in robotics.